Interface Landau levels in graphene monolayer-bilayer junction

Mikito Koshino1,, Takeshi Nakanishi2,, and Tsuneya Ando1

1Department of Physics, Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
2Nanotube Research Center, AIST, 1-1-1 Higashi, Tsukuba 305-8565, Japan

(Dated: August 23, 2010)

Electronic structure of graphene monolayer-bilayer junction in a magnetic field is studied within an effective-mass approximation. The energy spectrum is characterized by interface Landau levels, i.e., the locally flat bands appearing near the boundary region, resulting in a series of characteristic peaks in the local density of states. Their energies are independent of boundary types such as zigzag or armchair. In the atomic scale, the local density of states shows a Kekulé pattern due to the valley mixing in the armchair boundary, while does not in the zigzag boundary.

I. INTRODUCTION

Graphene1–8 and its bilayer9–16 are characterized by zero-gap band structures supporting different types of chiral particles and Landau-level structures. Recently, atomically thin graphene samples were experimentally fabricated using mechanical exfoliation17,18 and epitaxial growth.19,20 The characteristic Landau-level structure and integer quantum Hall effect1,4–7,9,13 were observed in magnetotransport measurements.21,22 In this paper we study the electronic structure of a hybrid system composed of monolayer and bilayer graphenes in magnetic fields.

The band structure of monolayer graphene is characterized by Dirac-like spectrum in which conduction and valence bands with linear dispersion stick at the K point and K’ points located at a Brillouin zone corner,1–3,8 which are called valleys. Bilayer graphene has a zero-gap structure, but with quadratic dispersion unlike monolayer.9–16 In a magnetic field, the level structure of monolayer1,4–7 and bilayer9,15,23,24 differs in number of degeneracy at zero-energy and the quantum Hall plateaus appear at different filling factors accordingly.15,21,22

The electronic states of graphene ribbons with finite width have been theoretically studied.25–45 In particular, when the boundary is along zigzag direction, special states localized at the sample edge appear as zero-energy modes.25,26 Similar zero-energy edge states exist also in bilayer graphene.46,47 Experimentally, the electronic states at monatomic step of graphite were probed by scanning tunneling spectroscopy.48,49 In a magnetic field, electron-like and hole-like Landau levels are shifted upwards and downwards near the boundary, respectively, forming edge channels away from zero energy.15,29,50–52 Recently, the transport through quantum structures consisting of monolayer and bilayer graphenes was investigated.53,55 In a previous paper, the boundary conditions between monolayer and bilayer graphenes were studied and the transmission probability through the junction was calculated in the absence of magnetic field.54

In this paper, we study the energy spectrum and local density of states of the monolayer-bilayer graphene junction in magnetic fields. Based on previous study,54 we consider a composed system of half-infinite graphene monolayer and bilayer connected by a mono-atomic step along zigzag or armchair direction. In Sec. II, we present effective mass description for monolayer and bilayer graphenes and introduce formulation to describe Landau levels of the junction in Sec. III. In Sec. IV, we numerically calculate the energy spectra for several types of the boundaries as well as the local density of states. The conclusion is presented in Sec. V.

II. EFFECTIVE MASS HAMILTONIAN

A. Monolayer graphene

Graphene is composed of a honeycomb network of carbon atoms, containing a pair of sublattices, denoted by A and B. Electronic states in the vicinity of K and K’ points in the Brillouin zone are well described by envelope functions (KA, KB) and (K’A, K’B), respectively, in an effective-mass approximation. At the K point, the effective Hamiltonian for (KA, KB) is1–3,8

\begin{equation}
\mathcal{H}^{K} = \begin{pmatrix}
0 & v\pi_{-} \\
v\pi_{+} & 0
\end{pmatrix},
\end{equation}

where \(v \approx 1 \times 10^{6} \text{ m/s}\) is the band velocity \(\pi_{\pm} = \pi_{x} \pm i\pi_{y}\), and \(\pi = -i\hbar \nabla + (e/c)A\) with vector potential in the Landau gauge, \(A = (0, Bx)\), giving external magnetic field \(B = \nabla \times A\). The Hamiltonian at the K’ point is obtained by exchanging \(\pi_{x}\) in Eq. (1).

The wavenumber \(k_{y}\) remains a good quantum number in the present geometry. The operator \(\pi_{\pm}\) can be expressed as

\begin{align}
\pi_{\pm} &= i\hbar \omega_{B} a^\dagger, \\
v\pi_{\pm} &= -i\hbar \omega_{B} a,
\end{align}

where \(\hbar \omega_{B} = \sqrt{2} \hbar c/|B|\) with magnetic length \(|B| = \sqrt{\hbar c/(eB)}\) and \(a^\dagger\) and \(a\) are raising and lowering operators, respectively, defined by

\begin{equation}
a = \frac{\partial}{\partial z} + \frac{z}{2},
\end{equation}

where \(z\) is the atomic coordinate.
with dimensionless coordinate,
\[z = \sqrt{2} \left(\frac{x}{l_B} + k_y l_B \right) = \frac{\sqrt{2}(x - X)}{l_B}. \] (4)

Here, the center coordinate of the cyclotron motion is defined by
\[X = -k_y l_B. \] (5)

The Schrödinger equation then becomes
\[
\varepsilon F^K_{\nu} = -i\hbar \omega_B a F^K_{\nu}
\]
\[
\varepsilon F^B_{\nu} = i\hbar \omega_B a^\dagger F^K_{\nu},
\] (6)
giving
\[
(\nu - a^\dagger a) F^K_B = \left(\frac{\partial^2}{\partial z^2} + \nu + \frac{1}{2} - \frac{z^2}{4} \right) F^K_B = 0,
\] (7)
with
\[
\nu = \left(\frac{\varepsilon}{\hbar \omega_B} \right)^2.
\] (8)

The independent solutions of Eq. (7) are given by \(D_{\nu}(z) \)
and \(D_{\nu-1}(-iz) \), where \(D_{\nu}(z) \) is Weber’s parabolic cylinder function defined by
\[
D_{\nu}(z) = 2^{\nu/2} \pi^{-1/4} \left[\frac{1}{\Gamma(1 - \nu/2)} F\left(-\nu, \frac{1}{2}, \frac{z^2}{2} \right) \right] - \frac{\sqrt{2}z}{\Gamma(-\nu/2)} F\left(1 - \nu, \frac{3}{2}, \frac{z^2}{2} \right),
\] (9)
with \(F(\alpha, \gamma; z) \) being Kummer’s hypergeometric function. The components \(F^K_{\nu} \) and \(F^B_{\nu} \) are related by Eq. (6) with formula
\[
\begin{align*}
a^\dagger D_{\nu}(z) &= D_{\nu+1}(z), \\
da D_{\nu}(z) &= \nu D_{\nu-1}(z).
\end{align*}
\] (10)

Because of relation
\[
D_{\nu}(z) = e^{\nu \pi i} D_{\nu}(z) + \sqrt{\frac{2\pi}{\Gamma(-\nu)}} e^{(\nu+1)\pi i/2} D_{\nu-1}(-iz),
\] (11)
\(D_{\nu}(z) \) and \(D_{\nu}(-z) \) can also be chosen as independent solutions of Eq. (7), as long as \(1/\Gamma(-\nu) \) is nonzero, i.e., \(\nu \) is not 0 or a positive integer. Then, \(D_{\nu}(z) \) and \(D_{\nu}(-z) \) exponentially diverge in limits \(z \to -\infty \) and +\(\infty \), respectively, while converge to zero in the opposite side. They can never be a bulk eigenfunction, but may appear when the system is half-infinite in the \(x \) direction. For a nonnegative integer \(n \), \(D_n(z) \) and \(D_n(-z) \) are linearly dependent, and coincide with usual Landau-level function except for a normalization factor as
\[
D_n(z) = (-1)^n D_n(-z) = 2^{-n/2} e^{-z^2/4} H_n(z/\sqrt{2}),
\] (12)

with Hermite polynomial \(H_n(z) \). The other solution \(D_{-n-1}(iz) \) then diverges both in limits \(z = +\infty \) and \(-\infty \) and is excluded. \(D_n(z) \) at a negative integer \(n \) generally diverges for \(z \to -\infty \). At \(n = -1 \), for example, we have
\[
D_{-1}(z) = \sqrt{2\pi} e^{z^2/4} \left[-1 + \text{erf}(z/\sqrt{2}) \right],
\] (13)
with error function
\[
\text{erf}(x) = \int_0^x e^{t^2} dt.
\] (14)

Let us define
\[
\phi^B_n(z) = D_n(z), \quad \phi^B_{-n}(z) = D_n(-z),
\] (15)
where \(L \) and \(R \) represent the solutions finite in limits \(z \to -\infty \) and +\(\infty \), respectively. We will consider a monolayer-bilayer junction in which the region \(x < 0 \) is monolayer and \(x > 0 \) is bilayer. The eigen function in monolayer is given by
\[
\begin{align*}
\left(\frac{F^K_B}{F^K_B} \right) &= \left(\begin{array}{c} i\alpha_1 \phi^B_{n-1} \\ \alpha_2 \phi^B_n \end{array} \right) e^{-iXy/\sqrt{\hbar}}, \\
\left(\frac{\alpha_1}{\alpha_2} \right) &= \left(\frac{\varepsilon/\hbar \omega_B}{1} \right).
\end{align*}
\] (16)

The wavefunction at the \(K' \) point can be obtained by \((F^K_{n'}, F^K_{B'}) = (F^K_B, F^K_B) \).

The Landau level energies of bulk monolayer graphene are given by the condition that the wavefunction is finite in limits \(x = \pm \infty \), i.e., \(\nu(\varepsilon) \) is non-negative integer \(n \). We get\(^{1,4-7}\)
\[
\varepsilon_0 = 0, \quad \varepsilon_{n, \pm} = \pm \hbar \omega_B \sqrt{n} \quad (n = 1, 2, \ldots).
\] (18)

The plot of \(\nu(\varepsilon) \) and bulk Landau-level energies are shown in Fig. 1.
B. Bilayer graphene

Bilayer graphene is a pair of graphene layers arranged in AB (Bernal) stacking and includes A_1 and B_1 atoms on layer 1 and A_2 and B_2 on layer 2. The layers are arranged such that sites B_1 and A_2 are directly below and above each other, which are connected by interlayer coupling $\gamma_1 \sim 0.39 \text{ eV}$. The effective Hamiltonian for $(F_{A_1}^K, F_{B_1}^K, F_{A_2}^K, F_{B_2}^K)$ is given by \(^{16}\)

\[
H^K = \begin{pmatrix}
0 & v\pi_- & 0 & 0 \\
v\pi_+ & 0 & \gamma_1 & 0 \\
0 & \gamma_1 & 0 & v\pi_- \\
0 & 0 & v\pi_+ & 0
\end{pmatrix}.
\]

(19)

The Hamiltonian at the K' point is obtained by exchanging π_\pm in Eq. (19). The eigenfunction of Eq. (19) finite in limit $x \to +\infty$ is written as

\[
\begin{pmatrix}
F_{A_1}^K \\
F_{B_1}^K \\
F_{A_2}^K \\
F_{B_2}^K
\end{pmatrix} = \begin{pmatrix}
-i\beta_1^0 & \beta_2^0 & \beta_3^0 & i\beta_4^0 \\
\beta_2^0 & -i\beta_1^0 & \beta_3^0 & i\beta_4^0 \\
\beta_3^0 & \beta_4^0 & -i\beta_1^0 & \beta_2^0 \\
i\beta_4^0 & -i\beta_3^0 & \beta_2^0 & -i\beta_1^0
\end{pmatrix} e^{-iXY/R_b},
\]

(20)

with

\[
\nu_\mu(\varepsilon) = -\frac{1}{2} + \varepsilon^2 + \frac{\mu}{2} \sqrt{4\varepsilon^2 + 1},
\]

(21)

\[
\begin{pmatrix}
\beta_1^0 \\
\beta_2^0 \\
\beta_3^0 \\
\beta_4^0
\end{pmatrix} = \begin{pmatrix}
\beta_1^0 \\
\beta_2^0 \\
\beta_3^0 \\
\beta_4^0
\end{pmatrix} = \begin{pmatrix}
\frac{\gamma_1}{\varepsilon} (\varepsilon^2 - \nu_\mu) \\
\frac{\gamma_1}{\varepsilon} (\varepsilon^2 - \nu_\mu) \\
\frac{\gamma_1}{\varepsilon} (\varepsilon^2 - \nu_\mu) \\
\frac{\gamma_1}{\varepsilon} (\varepsilon^2 - \nu_\mu)
\end{pmatrix},
\]

(22)

where $\mu = \pm$ is another degree of freedom, $\varepsilon = \varepsilon/(\hbar \omega_B)$, and $\gamma_1 = \gamma_1/(\hbar \omega_B)$. The wavefunction at the K' point is obtained by $(F_{A_1}^{K'}, F_{B_1}^{K'}, F_{A_2}^{K'}, F_{B_2}^{K'}) = (F_{B_2}^K, F_{A_2}^K, F_{B_1}^K, F_{A_1}^K)$. The Landau levels of bulk bilayer graphene are obtained by the condition that the wavefunction of Eq. (20) is finite in limits $x \to +\infty$, i.e., includes only ϕ_n^R of non-negative integer n. Allowed indexes are $\nu_\mu(\varepsilon) = 0, 1, 2, \cdots$ and $\nu_\nu(\varepsilon) = -1, 0, 1, \cdots$. For $\nu = -1, 0$ and $\nu_\nu = 0$, the wavefunction Eq. (20) appears to include ϕ_n^R with negative n, but corresponding coefficient such as β_\pm^1 vanishes. At $\varepsilon = 0$, there are two energy levels for $\nu_\nu = -1, 0$ and $\nu_\mu = 1$. Figure 1 illustrates $\nu_\mu(\varepsilon)$ and bulk Landau-level energies of bilayer graphene.

III. MONOLAYER-BILAYER JUNCTION

We consider a composite system of monolayer and bilayer graphenes, where the left half ($x < 0$) is monolayer and the right half ($x > 0$) is AB-stacked bilayer. We assume that one layer of the bilayer part, containing A_1 and B_1 sites, seamlessly continues to the monolayer part with A and B sites, while the other layer composed of A_2 and B_2 sites is sharply cut at the boundary chosen as $x = 0$. In the following, we consider two kinds of zigzag boundaries, zigzag-1 (ZZ1) and zigzag-2 (ZZ2) and armchair boundary (AC) as illustrated in Fig. 2 (a), (b), and (c).\(^{54}\)

We assume that the system infinitely continues in the y direction parallel to the boundary. The wavefunctions of monolayer and bilayer regions are required to converge in limits $x = -\infty$ and ∞, respectively. At given energy ε, they can be written for the monolayer part ($x < 0$)

\[
\begin{pmatrix}
F_{A_1}^K \\
F_{B_1}^K \\
F_{A_2}^K \\
F_{B_2}^K
\end{pmatrix} = \begin{pmatrix}
i\alpha_1^L \phi_{\nu-1}^L \\
\alpha_2^L \phi_{\nu-1}^L \\
\beta_1^0 \phi_{\nu+1}^0 \\
\beta_2^0 \phi_{\nu+1}^0
\end{pmatrix} e^{-iXY/R_b},
\]

(23)

for the bilayer part ($x > 0$)

\[
\begin{pmatrix}
F_{A_1}^{K'} \\
F_{B_1}^{K'} \\
F_{A_2}^{K'} \\
F_{B_2}^{K'}
\end{pmatrix} = \begin{pmatrix}
i\alpha_2^L \phi_{\nu}^L \\
\alpha_1^L \phi_{\nu}^L \\
\beta_1^0 \phi_{\nu+1}^0 \\
\beta_2^0 \phi_{\nu+1}^0
\end{pmatrix} e^{-iXY/R_b},
\]

(24)

and for the bilayer part ($x > 0$)

\[
\begin{pmatrix}
F_{A_1}^{K'} \\
F_{B_1}^{K'} \\
F_{A_2}^{K'} \\
F_{B_2}^{K'}
\end{pmatrix} = \begin{pmatrix}
i\beta_1^0 \phi_{\nu}^0 \\
\beta_2^0 \phi_{\nu}^0 \\
\beta_2^0 \phi_{\nu+1}^0 \\
\beta_1^0 \phi_{\nu+1}^0
\end{pmatrix} e^{-iXY/R_b},
\]

(25)

with six unknown coefficients $A^K, A^{K'}, B^K_\pm$, and $B^{K'}_\pm$ to be determined by the specific boundary condition.

A. Zigzag boundary, ZZ1

The boundary ZZ1 is parallel to the zigzag direction of honeycomb lattice, and the front-most line of bilayer part is formed by B_1 and A_2 sites. As the zigzag boundary does not mix the wavefunctions at different valleys K and K', the boundary condition is separately expressed for each valley. The conditions are\(^{54}\)

\[
\begin{pmatrix}
F_{A_1}^0(y) \\
F_{B_1}^0(y) \\
F_{A_2}^0(y) \\
F_{B_2}^0(y)
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix},
\]

(27)

for $\nu = K$ and K'. For the K point, the conditions are rewritten with use of the wavefunctions (23) and (25) as

\[
M^{K}_{\text{ZZ1}} \begin{pmatrix}
A^K \\
B^K_+ \\
B^K_-
\end{pmatrix} = 0,
\]

(28)

with

\[
M^{K}_{\text{ZZ1}} \equiv \begin{pmatrix}
\alpha_1^L \phi_{\nu-1}^L & \beta_1^0 \phi_{\nu+1}^0 & \beta_1^0 \phi_{\nu+1}^0 \\
-\alpha_2^L \phi_{\nu}^L & \beta_2^0 \phi_{\nu+1}^0 & \beta_2^0 \phi_{\nu+1}^0 \\
0 & 0 & 0
\end{pmatrix},
\]

(29)

where the wavefunctions such as ϕ_n^R represent the values at $x = 0$. For each X, the eigen energies are obtained by
The boundary conditions are searching for solutions of \(\det M_{K^\prime} = 0 \). The corresponding equation for \(K^\prime \) is

\[
M_{K^\prime}^{K_{ZZ1}} = 0, \quad (30)
\]

\[
M_{K^\prime}^{K_{ZZ1}} = \begin{pmatrix}
\alpha_2 \phi_{v-1}^L & \beta_1^+ \phi_{v+1}^R & \beta_1^- \phi_{v-1}^R \\
-\alpha_1 \phi_{v-1}^L & \beta_1^+ \phi_{v+1}^R & \beta_1^- \phi_{v-1}^R \\
0 & \beta_1^+ \phi_{v+1}^R & \beta_1^- \phi_{v-1}^R
\end{pmatrix}. \quad (31)
\]

B. Zigzag boundary, ZZ2

The boundary ZZ2 is another zigzag boundary where the front-most line of bilayer part is formed by \(B_2 \) sites. The boundary conditions are\(^{34}\)

\[
F_{A1}^v(0, y) = F_{A1}^v(0, y), \\
F_{B1}^v(0, y) = F_{B1}^v(0, y), \\
F_{A2}^v(0, y) = 0, \quad (32)
\]

where only the third condition is different from Eq. (28). Similarly to ZZ1, we obtain the matrix for the \(K \) and \(K^\prime \) points

\[
M_{K_{ZZ2}}^{K} = \begin{pmatrix}
\alpha_1 \phi_{v-1}^L & \beta_1^+ \phi_{v+1}^R & \beta_1^- \phi_{v-1}^R \\
-\alpha_2 \phi_{v-1}^L & \beta_1^+ \phi_{v+1}^R & \beta_1^- \phi_{v-1}^R \\
0 & \beta_1^+ \phi_{v+1}^R & \beta_1^- \phi_{v-1}^R
\end{pmatrix}, \quad (33)
\]

\[
M_{K_{ZZ2}}^{K^\prime} = \begin{pmatrix}
\alpha_2 \phi_{v-1}^L & \beta_1^+ \phi_{v+1}^R & \beta_1^- \phi_{v-1}^R \\
-\alpha_1 \phi_{v-1}^L & \beta_1^+ \phi_{v+1}^R & \beta_1^- \phi_{v-1}^R \\
0 & \beta_1^+ \phi_{v+1}^R & \beta_1^- \phi_{v-1}^R
\end{pmatrix}. \quad (34)
\]

C. Armchair boundary (AC)

The boundary conditions for the armchair boundary AC are\(^{34}\)

\[
F_{A1}^v(0, y) = F_{A1}^v(0, y), \\
F_{B1}^v(0, y) = F_{B1}^v(0, y), \\
F_{A2}^v(0, y) - F_{A2}^v(0, y) = 0, \\
F_{B2}^v(0, y) + F_{B2}^v(0, y) = 0, \quad (35)
\]

where the third and fourth conditions mix the wavefunctions at the \(K \) and \(K^\prime \) points. They are rewritten as

\[
M_{AC} = \begin{pmatrix}
A^K & B^K \\
B^K & A^{K^\prime}
\end{pmatrix} = 0, \quad (36)
\]

with

\[
M_{AC} = \begin{pmatrix}
M_{K_{ZZ1}}^{K} & M_{K_{ZZ2}}^{K} \\
M_{K_{ZZ2}}^{K^\prime} & M_{K_{ZZ1}}^{K^\prime}
\end{pmatrix}, \quad (37)
\]

\[
M_{K_{ZZ1}}^{K} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -\beta_1^+ \phi_{v+1}^R \beta_1^- \phi_{v-1}^R
\end{pmatrix} \quad (38)
\]

\[
M_{K_{ZZ1}}^{K^\prime} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -\beta_1^+ \phi_{v+1}^R \beta_1^- \phi_{v-1}^R
\end{pmatrix} \quad (39)
\]

D. Interface Landau levels

Let us consider a special state of valley \(v \), which satisfies the conditions

\[
F_{A1}^v(0, y) = F_{A1}^v(0, y), \\
F_{B1}^v(0, y) = F_{B1}^v(0, y), \\
F_{A2}^v(0, y) = 0, \\
F_{B2}^v(0, y) = 0, \quad (40)
\]

Because these include both boundary conditions for ZZ1 and ZZ2, such a state must be shared by both ZZ1 and ZZ2. Those states exist at different series of points \((\varepsilon, X)\)
for $v = K$ and K', denoted by P_K and $P_{K'}$. Further, the wavefunction satisfying Eq. (40) also meets conditions (35) in the armchair boundary, when the wave amplitudes of the other valley are all zero. As a result, points P_K and $P_{K'}$ are also shared by Landau levels in an armchair boundary.

Using some algebra, we can show that at the special points P_K and $P_{K'}$, the gradient of the Landau level energy in X vanishes in any types of boundaries ZZ1, ZZ2, and AC. We can show that the second derivative also vanishes for ZZ2. The detailed proof is presented in Appendix A. Accordingly the density of states diverges at the identical energies independent of the boundary type. Further, at those points, the wavefunctions of monolayer part and bilayer part connect smoothly on layer 1, because the amplitude on layer 2 locally vanishes and thus hardly affects the electron motion on layer 1. As a result, the wavefunctions on the monolayer and bilayer sides are coupled well, and the amplitude is almost equally distributed to both sides.

As will be demonstrated in numerical results presented in the next section, in ZZ1 and AC, $\varepsilon(X)$ takes a local maximum at each P_K and $P_{K'}$ in positive energies, while there usually exists another point nearby where $\varepsilon(X)$ takes a local minimum, giving divergent density of states as well. We will show that, around these points, a crossover takes place from a monolayer edge-state mainly localized in monolayer, to a bilayer edge-state mainly localized in bilayer, when X is varied. It is quite natural that slight shift in X does not change the energy at such crossover points, because they are anti-crossing points between intersecting energy levels of monolayer and bilayer edgesates. In ZZ2, on the other hand, the energy minima and maxima are degenerate corresponding to vanishing second derivative in X at P_K and $P_{K'}$. Therefore $\varepsilon(X)$ is even smoother and the divergence in the density of states is stronger than ZZ1 and AC. These Landau levels corresponding to extrema of $\varepsilon(X)$ can be referred to as the interface Landau levels.

E. Zero energy levels

The energy spectrum of a monolayer-bilayer junction approaches that of bulk monolayer and bilayer graphenes in the limit of $X \to +\infty$ and $-\infty$, respectively, because the wave function, centered at $x = X$, mostly resides in the bulk region far from the boundary. On the other hand, the zero-energy level is special in that it resides in the bulk region far from the boundary. On the other hand, the zero-energy level approaches that of bulk monolayer and bilayer graphenes in the limit of $X = \pm \infty$, for (a) zigzag-1, (b) zigzag-2, and (c) armchair boundaries. $+1$ represents extra degeneracy due to the zero-energy edge mode.

Table I summarizes the degeneracy due to the edge states. In ZZ1 and ZZ2, the edge state appears either of $X = \pm \infty$ at each valley, while it is absent in AC.\(^{54}\)

<table>
<thead>
<tr>
<th>X</th>
<th>K</th>
<th>$-\infty$</th>
<th>$+\infty$</th>
<th>$\pm \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K'</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table I: Number of zero-energy Landau levels per spin in the limit of $X = \pm \infty$, for (a) zigzag-1, (b) zigzag-2, and (c) armchair boundaries. $+1$ represents extra degeneracy due to the zero-energy edge mode.

F. Local density of states

In monolayer graphene, the amplitude of the wavefunctions at A and B sites are written in terms of effective-mass envelope functions as\(^{8}\)

\[
\psi_A(R) = e^{iKRF_A} + e^{iKRF_A'}, \quad \psi_B(R) = -\omega e^{iKRF_B} + e^{iKRF_B'}, \tag{41}
\]

where ω is the angle between the x axis and zigzag direction of honeycomb lattice and $\omega = e^{i\pi/3}$. In bilayer graphene, the amplitude can be written as

\[
\begin{align*}
\psi_{A1}(R) &= e^{iKRF_{A1}} + e^{iKRF_{A1}'}, \\
\psi_{B1}(R) &= -\omega e^{iKRF_{B1}} + e^{iKRF_{B1}'}, \\
\psi_{A2}(R) &= -\omega e^{iKRF_{A2}} + e^{iKRF_{A2}'}, \\
\psi_{B2}(R) &= \omega e^{iKRF_{B2}} + e^{iKRF_{B2}'}. \\
\end{align*}
\tag{42}
\]

In a tight-binding model, the local density of state (LDOS) on site A located at the position R is defined by

\[
\rho_A(\varepsilon; R) = \sum_\alpha \left| \delta(\varepsilon - \varepsilon^{(\alpha)}) |\psi^{(\alpha)}_A(R)|^2 \right|, \tag{43}
\]

where $\varepsilon^{(\alpha)}$ and $\psi^{(\alpha)}$ are the energy and the wavefunction of eigenstate α. Similar expressions can be written down for other sites B, A_1, etc. When the wave amplitudes at the K and K' points coexist in a single eigenstate, LDOS has a Kekulé pattern due to the interference between the factors e^{iKR} and $e^{iK'R}$.\(^{57}\) In the present case, this is expected to appear in the armchair boundary which mixes the K and K' valleys, while absent in ZZ1 or ZZ2, where every eigenstate is a single-valley state. We also define the spatially averaged LDOS for site A as

\[
\rho_A^{av}(\varepsilon; R) = \sum_\alpha \sum_{v=K,K'} \left| \delta(\varepsilon - \varepsilon^{(\alpha)}) (f^{(\alpha)})_v(R) \right|^2. \tag{44}
\]

This is an average of the original LDOS in Eq. (43) over several unit cells in the region smaller than typical length scales of the envelope function.
IV. NUMERICAL RESULTS

Figure 3 shows the energy spectra against X, numerically calculated for the junctions of ZZ1, ZZ2, and AC boundaries at magnetic field of $\hbar \omega_B = \gamma_1/3$ ($B \sim 10T$). Landau levels approach those of bulk monolayer and of bilayer in the limit $X \to \infty$ and $-\infty$, respectively. In the boundary region, the valley-degenerate levels split and connect to different levels in the opposite side. The black and white circles represent the interface Landau levels P_K and $P_{K'}$, respectively, which are independent of boundary type and corresponds to local band maxima. In accordance with the argument in Sec. III D, we actually see that energy levels pass through those points in all three cases and the gradient vanishes there. In ZZ1 and AC, interface Landau levels corresponding to band minima are also present, while in ZZ2, they coincide with inflection points because the second derivative vanishes.

The oscillatory band structures appearing in the boundary region can be understood in relation to terminated monolayer and bilayer graphenes. Let us take ZZ1 boundary, and consider a system with infinite on-site potential added on an array of B sites near the boundary, as illustrated as white circles in the top panel of Fig. 4. The system is then separated into monolayer terminated with Klein’s edge and bilayer terminated with zigzag edge. In the effective mass approximation, this is equivalent to the boundary condition $F_{B1}^e = 0$ for monolayer and $F_{B1}^e = F_{B2}^e = 0$ for bilayer. Note that in the effective-mass approximation, shifting of on-site potential position by the order of the lattice constant does not make a difference in the result.

Lower panels of Fig. 4 show the energy spectrum of ZZ1 (solid lines) and that of the terminated system (dashed lines). The spectra of K and K' are shown in separate plots. In the terminated system, the independent Landau levels of monolayer and bilayer sharply go up as X goes over the boundary. This effect can be modeled by on-site potential at B sites at the boundary. For an electron coming from bilayer side, on the other hand, the B_1 site which was absent in the low-energy spectrum suddenly resumes at the beginning of the monolayer region. This is again roughly regarded as some on-site potential added to B_1 sites to shift high-energy states to zero energy.

As another remark, we observe that energy levels of ZZ1 pass through every crossing point of terminated bilayer and monolayer levels. This occurs when an eigenfunction of ZZ1 happens to have a node on the on-site potential sites, because such a state is also an eigenstate when on-site potential is present. Therefore the wavefunction of ZZ1 becomes identical with that of the terminated system at each crossing point.

Similar analysis is also available in boundary ZZ2. Fig.
FIG. 4: (Above) Monolayer-bilayer junction of type ZZ1, separated by infinite potential on white circles into independent monolayer and bilayer graphenes. (Below) Energy spectrum of junction ZZ2 (solid) and separated system (dashed), in magnetic field $\hbar \omega_B = \gamma_1/3$. Left and right panels show the spectra of the K and K' points, respectively, and the black and white circles are the interface Landau levels.

FIG. 5: Plots similar to Fig. 4 for ZZ2.

Figure 6 plots the wavefunctions near an interface Landau levels associated with the K' point in ZZ1, where (a) to (f) correspond to the points in the energy spectrum in Fig. 4. The point (b) is exactly at a local maximum $P_{K'}$. There, the wavefunction of layer 1 smoothly connects at the boundary as argued in Sec. III D, while generally not in other cases. The point (e) is exactly at the crossing point of terminated levels. There, the wave function indeed has a node at the interface for the B and B_1 components and thus can be an eigenstate of the separate monolayer and bilayer. At the local band minimum (d), the wave function does not have special features in contrast to $P_{K'}$.

In the energy spectrum, the region between (a) and (b) and between (e) and (f) have slope close to that of the terminated bilayer, while the region between (b) and (d) has slope close to that of the terminated monolayer. Correspondingly, the wavefunctions of (a) and (f) have significant amplitudes in bilayer side, while (c) has great amplitude in monolayer side.

Figure 7 illustrates the typical atomic-scale LDOS of Eq. (43) at interface Landau levels. We here take the boundary ZZ2 at the energy of the lowest interface Landau level near $\varepsilon = 0.631 \hbar \omega_B$. The areas of circles in upper and lower panels represent the relative amplitude of LDOS at each atom on layers 1 and 2, respectively, while open and filled circles represent the A and B sublattices. The result mainly reflects the wavefunction of interface Landau level, since the flat band gives a dominant contribution to LDOS. We see that the wave amplitude on layer 1 connects smoothly at the boundary region, as the amplitude of layer 2 is almost absent there.

For comparison, we show the similar plot of LDOS of the armchair boundary at a different energy $\varepsilon = 0.3 \hbar \omega_B$ in Fig. 8. In accordance with the previous argument, the plot clearly exhibits the Kekulé pattern unlike in ZZ2. Note that, even in the armchair boundary, the Kekulé pattern disappears when the energy comes to an interface Landau level, because the eigenfunction becomes a single-valley state there.
FIG. 6: Wavefunctions near the interface Landau level of the K' point in ZZ1 at $\hbar \omega_B = \gamma_1 / 3$. (a) to (f) correspond to the points in the energy spectrum in Fig. 4.

FIG. 7: Local density of states of boundary ZZ2 with $\hbar \omega_B = \gamma_1 / 3$, at the energy $\varepsilon = 0.631 \hbar \omega_B$ near the lowest interface Landau level of K. The areas of circles in upper and lower panels represent the amplitude of LDOS at each atom on the layer 1 and 2, respectively, while open and filled circles represent A and B sublattices, respectively.

Figure 9 shows the averaged local density of states (LDOS) defined in Eq. (44), for ZZ2 boundary. The vertical scale is shared with the corresponding energy spectrum at left. We observe series of peaks corresponding to the interface Landau levels of P_K and $P_{K'}$ owing to the large LDOS due to the flat band, and its spatial distribution is characterized by node pattern of the corresponding wavefunction. While not shown, the peak patterns are quite similar among ZZ1, ZZ2, and AC, since every interface Landau level appears at the identical energy with the identical effective-mass wavefunction. In ZZ1 and AC, the band minima appearing near P_K and $P_{K'}$ also contribute to the LDOS divergence and the peak structure is a little blurred.

Near the interface Landau levels, LDOS has a considerable amplitude in monolayer region, while otherwise it is localized mostly in the bilayer region. This is because the monolayer and bilayer states are well hybridized near the interface Landau levels, while in other regions where the band lines are downslope, the states mainly originate from bilayer, as argued above.

V. CONCLUSION

We have studied electronic structures of monolayer-bilayer graphene junctions in magnetic fields. The energy spectrum near the boundary region exhibits the oscillatory structure, which can be regarded as a remnant of hybridization of Landau levels of terminated monolayer and bilayer graphenes. The band structure is characterized by the interface Landau levels where the band energy is locally constant. The energy of interface levels is insensitive to the way the second layer is terminated, suggesting that it would be robust even in a disordered junction, which contains a random atomic configuration at the boundary. Interface Landau levels give a characteristic peak pattern to LDOS, which may be observed by scanning spectroscopic measurement.48,49,58,59

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research on Priority Area “Carbon Nan-
FIG. 8: Plot similar to Fig. 7, showing the local density of states of the armchair boundary with $\hbar \omega_B = \gamma_1/3$ at the energy $\varepsilon = 0.3 \hbar \omega_B$.

FIG. 9: (Right) Averaged local density of states at different atomic sites and (left) corresponding energy spectrum in boundary ZZ2 at magnetic field $\hbar \omega_B \gamma_1/3 (B \approx 10T)$. The width of each bin in energy is taken as $0.02 \hbar \omega_B$.

Appendix A: Special flat-band points

Here we prove that, at a special point (ε, X) where a wavefunction satisfies Eq. (40), the derivative of Landau level in X vanishes in ZZ1, ZZ2, and AC, and the second derivative also vanishes in ZZ2. The condition Eq. (40) is alternatively written as

$$\det M_{ZZ1}^\nu = \det M_{ZZ2}^\nu = 0.$$ \hspace{1cm} (A1)

In the following, we will show that Eq. (A1) leads to

$$\frac{\partial}{\partial k_y} \det M_{ZZ1}^\nu = \frac{\partial}{\partial k_y} \det M_{AC}^\nu = 0$$ \hspace{1cm} (A2)

$$\frac{\partial^2}{\partial k_y^2} \det M_{ZZ2}^\nu = \frac{\partial^2}{\partial k_y^2} \det M_{ZZ2}^\nu = 0,$$ \hspace{1cm} (A3)

which immediately proves the statements above.

In the matrices M_{ZZ1}^ν and M_{ZZ2}^ν, we can eliminate $\phi^{L,R}_{\nu-1}$ by replacing them with $\phi^{L,R}_{\nu}$ and $\phi^{L,R}_{\nu+1}$, using the recursion formula of Weber’s function,

$$D_{\nu+1} - z D_{\nu} + \nu D_{\nu-1} = 0.$$ \hspace{1cm} (A4)
Eq. (A1) at $v = K$ can then be transformed as

$$\sum_{\mu = \pm} \mu (\varepsilon^2 - \nu_\mu) \phi_{\nu_\mu}^R (\phi_{\nu_\mu + 1}^L \phi_{\nu_\mu + 1}^R + \phi_{\nu_\mu + 1}^L \phi_{\nu_\mu}^R) = 0, \quad (A5)$$

$$\sum_{\mu = \pm} \mu (\varepsilon^2 - \nu_\mu) \phi_{\nu_\mu}^R (\phi_{\nu_\mu + 1}^L \phi_{\nu_\mu + 1}^R + \phi_{\nu_\mu + 1}^L \phi_{\nu_\mu}^R) = 0, \quad (A6)$$

with $\bar{\mu} = -\mu$, leading to

$$\phi_{\nu_\mu + 1}^L \phi_{\nu_\mu + 1}^R + \phi_{\nu_\mu + 1}^L \phi_{\nu_\mu}^R = 0,$$

(A7)

for both of $\mu = \pm$.

The derivative of the matrix determinant in k_y can be evaluated using Eq. (10). For M_{ZZ1}^K, we obtain

$$\frac{\partial \det M_{ZZ1}^K}{\partial k_y} \propto \sum_{\mu = \pm} \mu (\varepsilon^2 - \nu_\mu) \phi_{\nu_\mu}^R (\phi_{\nu_\mu + 1}^L \phi_{\nu_\mu + 1}^R + \phi_{\nu_\mu + 1}^L \phi_{\nu_\mu}^R) - \phi_{\nu_\mu}^L \sum_{\mu = \pm} \mu (\varepsilon^2 - \nu_\mu) (\varepsilon^2 - \nu_\mu) \phi_{\nu_\mu}^R \phi_{\nu_\mu + 1}^R, \quad (A8)$$

where $'$ represents the derivative in k_y. At the points satisfying Eq. (A1), the first term becomes zero because of Eq. (A7). The second term is transformed with Eq. (A7) as

$$\phi_{\nu_\mu + 1}^L \sum_{\mu = \pm} \mu (\varepsilon^2 - \nu_\mu) (\varepsilon^2 - \nu_\mu) \phi_{\nu_\mu}^R \phi_{\nu_\mu + 1}^R, \quad (A9)$$

which vanishes since the argument inside the summation is anti-symmetric in μ.

For M_{ZZ2}^K, we have

$$\frac{\partial \det M_{ZZ2}^K}{\partial k_y} \propto \sum_{\mu = \pm} \mu (\varepsilon^2 - \nu_\mu) \phi_{\nu_\mu}^R (\phi_{\nu_\mu + 1}^L \phi_{\nu_\mu + 1}^R + \phi_{\nu_\mu + 1}^L \phi_{\nu_\mu}^R), \quad (A10)$$

which similarly vanishes under the condition Eq. (A7). Eq. (A10) is even differentiated as

$$\frac{\partial^2 \det M_{ZZ2}^K}{\partial k_y^2} \propto \sum_{\mu = \pm} \mu (\varepsilon^2 - \nu_\mu) \phi_{\nu_\mu}^R (\phi_{\nu_\mu + 1}^L \phi_{\nu_\mu + 1}^R + \phi_{\nu_\mu + 1}^L \phi_{\nu_\mu}^R) - \phi_{\nu_\mu}^L \sum_{\mu = \pm} \mu (\varepsilon^2 - \nu_\mu) (\varepsilon^2 - \nu_\mu) \phi_{\nu_\mu}^R \phi_{\nu_\mu + 1}^R. \quad (A11)$$

The first term becomes zero again under Eq. (A7). The factor $\phi_{\nu_\mu}^R$ in the second term can be written in terms of $\phi_{\nu_\mu}^R$ and $\phi_{\nu_\mu + 1}^R$ using Eq. (10). Then it is shown to vanish by similar transformation to Eq. (A9).

The determinant of M_{AC} can be written in terms of those of ZZ1 and ZZ2 as,

$$\det M_{AC} = \det M_{ZZ1}^K \det M_{ZZ2}^K - \det M_{ZZ2}^K \det M_{ZZ1}^K. \quad (A12)$$

Under the condition $\det M_{ZZ1}^K = \det M_{ZZ2}^K = (\det M_{ZZ1}^K)^2 = (\det M_{ZZ2}^K)^2 = 0$, Eq. (A12) immediately gives $\det M_{AC} = 0$.

Appendix B: Nearly-zero energy states

Let us focus on the eigenstates in the vicinity of zero energy, taking the case of ZZ2 as an example. We will show here that the zero-energy levels in monolayer-bilayer junction are contributed not only by the Landau levels in bulk monolayer and bilayer, but also by the zero-energy edge states localized to the boundary. For K-point, there are two independent wavefunctions exactly at zero energy,

$$\Psi^{K1} = \begin{cases} (F^K_A) = 0, & (x < 0); \\ (F^K_B) = 0, & (x > 0); \end{cases} \quad (B1)$$

and

$$\Psi^{K2} = \begin{cases} (F^K_A) = 0, & (x < 0); \\ (F^K_B) = 0, & (x > 0), \end{cases} \quad (B2)$$

with $\phi_n \equiv \phi_n^R = (-1)^n \phi_n^L$ for a nonnegative integer n, and the overall normalization factor is omitted.

In $k_y \to -\infty$, the central coordinate $x = -k_y r_2$ goes deep inside of the bilayer region ($x > 0$), and Ψ^{K1} and Ψ^{K2} approach the wavefunctions of two zero-energy Landau levels of bulk bilayer graphene. In $k_y \to +\infty$, on the other hand, Ψ^{K1} becomes the only zero-energy level of the bulk monolayer, while Ψ^{K2} does not have any amplitudes in the monolayer side. The amplitude of Ψ^{K2} is then mostly concentrated in B_2 sites near the boundary, and approximates in $x \approx 0$,

$$\phi_0 \propto e^{-(x/k_y + k_x^0) \gamma} \approx \text{const.} \times e^{-k_y x}, \quad (B3)$$

which is independent of magnetic field. This corresponds to the zero-energy edge mode in zero magnetic field limit.54

For K'-point, we have a single state at zero energy,

$$\Psi^{K'1} = \begin{cases} (F^{K'}_A) = 0, & (x < 0); \\ (F^{K'}_B) = 0, & (x > 0). \end{cases} \quad (B4)$$

When k_y moves from $-\infty$ to ∞, the wavefunction $\Psi^{K'1}$ crosses over from one of zero-energy levels in bilayer, $\nu_- = -1$, to the only zero-energy level in monolayer.
Besides, when k_y is negative and $|k_y|l_B \gg 1$, there exists a pair of levels which are not exactly at, but very close to zero energy as shown in following. By expanding ν_\pm in Eq. (21) in ε, the determinant of M_{ZZZ}^K can be written in a small $|\varepsilon|$ as,

$$\det M_{ZZZ}^K = -\frac{\varepsilon}{\gamma_1} \phi_{\nu_+}^R (\phi_{\nu_+}^L \nu_+ + \phi_{\nu_-}^L \nu_{-1} + 1) + O(\varepsilon^3).$$ \hspace{1cm} (B5)

Eq. (B5) vanishes when $\phi_{\nu_+}^R$ is zero. When k_y is negative and $|k_y|$ is large, the function $\phi_{\nu_+}^R$ can be evaluated by the asymptotic expansion of $D_\nu(z)$ which stands for large $|z|$: \hspace{1cm}

$$D_\nu(z) \sim \begin{cases} D_\nu^{(1)}(z) & (|\arg z| < 3\pi/4) \\
D_\nu^{(2)}(z) + e^{2\pi i \nu} D_\nu^{(1)}(z) & (\pi/4 < |\arg z| < 5\pi/4) \\
D_\nu^{(1)}(z) = e^{-z^2/4} \sum_{k=0}^{\infty} (-1)^k (\nu - 1) \cdots (\nu - 2k + 1) \\
\frac{k!^{2k} z^{2k}}{k!^{2k} z^{2k}} \\
D_\nu^{(2)}(z) = -\sqrt{2\pi} \Gamma(-\nu) e^{z^2/4} \sum_{k=0}^{\infty} \frac{(\nu + 1)(\nu + 2) \cdots (\nu + 2k)}{k!^{2k} z^{2k}}. \end{cases}$$ \hspace{1cm} (B6)

When z is negative and $|\nu|$ is small, it approximates

$$D_\nu(z) \approx e^{-z^2/4} - \sqrt{2\pi} \nu \frac{e^{z^2/4}}{z},$$ \hspace{1cm} (B7)

leading to

$$\phi_{\nu_+}^R \approx e^{-(k_y l_B)^2/2} - \sqrt{2\pi} \nu_+ \frac{e^{(k_y l_B)^2/2}}{\sqrt{2k_y l_B}}.$$ \hspace{1cm} (B8)

$\phi_{\nu_+}^R$ becomes zero at $\nu_+ = -k_y l_B e^{-(k_y l_B)^2} / \sqrt{\pi}$. This gives the energies of nearly-zero energy mode,

$$\varepsilon_{\nu_+}^{K^2} \approx \pm \frac{-k_y l_B}{\sqrt{\pi}(1 + \gamma_1^4)} \exp(-k_y l_B^2).$$ \hspace{1cm} (B11)

The corresponding wavefunctions in the bilayer part are written as

$$\Psi_{\nu_+}^{K^2} \approx \begin{cases} \Psi_{\nu_+}^{K^2}_{\text{bulk}} + \Psi_{\nu_+}^{K^2}_{\text{edge}}, & \text{(B12)} \\
\Psi_{\nu_+}^{K^2}_{\text{bulk}} = \begin{pmatrix} i\phi_{1+\nu_+} \\
0 \\
-\phi_{0+\nu_+}/\gamma_1 \\
0 \end{pmatrix}, & \text{(B13)} \\
\Psi_{\nu_+}^{K^2}_{\text{edge}} = \begin{pmatrix} |\varepsilon|\phi_{0+\nu_+} \\
0 \\
i(1 + \gamma_1^4)(|\varepsilon|/\gamma_1^2)\phi_{0+\nu_+} \\
0 \end{pmatrix}, \end{cases}$$ \hspace{1cm} (B14)

with $\nu_+ = (1 + \gamma_1^4)\varepsilon$. In $k_y \to -\infty$, the energy $\varepsilon_{\nu_+}^{K^2}$ exponentially approaches zero in $k_y \to -\infty$, and $\Psi_{\nu_+}^{K^2}$ coincides with the zero-energy Landau level of bilayer, $\nu_+ = 0$. For $\Psi_{\text{edge}}^{K^2} B2$ component is nearly proportional to $D_{-1}(z)$, and approximates $\propto e^{-k_y z}$ near $x = 0$. This is another zero-energy edge state localized near the boundary in the bilayer region. Thus, the states $\Psi_{\nu_+}^{K^2}$ are described as a hybridization of the bulk bilayer Landau level and zero-energy edge states.

22. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature