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Abstract

We construct systematic expansions around four and two spatial dimensions for a Fermi gas near
the unitarity limit. Near four spatial dimensions such a Fermi gas can be understood as a weakly-
interacting system of fermionic and bosonic degrees of freedom. To the leading and next-to-leading
orders in the expansion over ε = 4 − d, with d being the dimensionality of space, we calculate the
thermodynamic functions and the fermion quasiparticle spectrum as functions of the binding energy
of the two-body state. We also show that the unitary Fermi gas near two spatial dimensions reduces
to a weakly-interacting Fermi gas and calculate the thermodynamic functions and the fermion quasi-
particle spectrum in the expansion over ε̄ = d − 2.

Then the phase structure of the polarized Fermi gas with equal and unequal masses in the unitary
regime is studied using the ε expansion. We find that at unitarity in the equal mass limit, there is
a first-order phase transition from the unpolarized superfluid state to a fully polarized normal state.
On the BEC side of the unitarity point, in a certain range of the two-body binding energy and the
mass difference, we find a gapless superfluid phase and a superfluid phase with spatially varying
condensate. These phases occupy a region in the phase diagram between the gapped superfluid phase
and the polarized normal phase.

Thermodynamics of the unitary Fermi gas at finite temperature is also investigated from the per-
spective of the expansion over ε. We show that the thermodynamics is dominated by bosonic excita-
tions in the low temperature region T � Tc. Analytic formulas for the thermodynamic functions as
functions of the temperature are derived to the lowest order in ε in this region. In the high temperature
region where T ∼ Tc, bosonic and fermionic quasiparticles are excited and we determine the critical
temperature Tc and the thermodynamic functions around Tc to the leading and next-to-leading orders
in ε and ε̄.

Finally we discuss the matching of the two systematic expansions around four and two spatial
dimensions in order to extract physical observables at d = 3. We find good agreement of the results
with those from recent Monte Carlo simulations.
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Chapter 1

Introduction

BCS-BEC crossover and the unitarity limit

Interacting fermionic systems appear in various subfields of physics. The Bardeen–Cooper–Schrieffer
(BCS) mechanism shows that if the interaction is attractive, the Fermi surface is unstable toward the
formation of Cooper pairs and the ground state of the system universally exhibits the superfluidity or
superconductivity [1, 2]. Such phenomena have been observed in the metallic superconductor [3], the
superfluid 3He [4], the high-Tc superconductor [5], and recently, in the ultracold atomic gases such
as 40K [6] or 6Li [7] under optical traps. Possibilities of the superfluid nuclear matter [8, 9], the color
superconductivity [10, 11], and the neutrino superfluidity [12] are also discussed in literatures, which
will be important to astrophysics such as the physics of neutron stars. Among others, experiments
on the ultracold atomic gases have the remarkable feature where the strength of attraction between
atoms is arbitrarily tunable through the magnetic-field induced Feshbach resonances [13, 14]. Their
interaction predominantly arises from binary s-wave collisions whose strength can be characterized
by the s-wave scattering length a. Across the Feshbach resonance, a can in principal be tuned to take
any value from −0 to −∞ and from +∞ to +0 [15, 16]. Therefore, the experiments of the ultracold
atomic gases provide an ideal field for studying interacting fermionic systems and testing various
many-body techniques developed for related problems.

With the use of the experimental technique of the magnetic-field tunable Feshbach resonance, the
longstanding idea of the crossover from the BCS state to the Bose–Einstein condensation (BEC) [17,
18, 19, 20] has been recently realized in laboratories. The schematic phase diagram of the BCS-BEC
crossover problem is shown in Fig. 1.1 as a function of the dimensionless variable 1/(akF) with kF

being the Fermi momentum (horizontal axis). Here the effective range of the interaction r0 is assumed
to be small r0kF → 0. As long as the attractive interaction between fermions is weak (BCS regime
where akF < 0), the system exhibits the BCS ground state characterized by the condensation of the
loosely bound Cooper pairs. On the other hand, if the attractive interaction is strong enough (BEC
regime where 0 < akF), two fermions form a bound molecule and the ground state of the system is
described by the BEC of the tightly bound molecules. These two apparently different situations are
considered to be smoothly connected without the phase transition, which means the ground state in
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2 Chapter 1. Introduction

1akF ����d=3
d ��jakFj=1
2
4

�1 BCS BEC +1Unitarity???
Figure 1.1: The BCS-BEC crossover problem in the plane of the inverse scattering length 1/akF and
the spatial dimension d. There are four limits where the system becomes non-interacting; akF → ±0,
d → 4, and d → 2.

the whole regime of the 1/(akF) axis is the superfluidity/superconductivity.

The both ends of the phase diagram correspond to weakly-interacting systems; a weakly-interacting
Fermi gas in the BCS limit akF → −0 and a weakly-interacting Bose gas in the BEC limit akF → +0.
In these two limits, the usual Green’s function techniques for the many-body problem are applica-
ble and we can understand the properties of the system in terms of the perturbative expansion over
|akF| � 1 [21]. An exception is the superfluidity in the BCS limit where the paring gap ∆ ∼ eπ/(2akF) is
a non-perturbative effect and never appears to any finite orders in the perturbative akF expansion. On
the other hand, there exists a strongly-interacting regime in the middle of the phase diagram where
|akF| � 1. The point of the infinite scattering length |akF| → ∞ corresponds to the threshold where
the zero energy bound molecule is formed and provides the conceptual boundary between the BCS
regime and the BEC regime. The perturbative expansion over |akF| obviously breaks down in this
regime because the expansion parameter is no longer small. Such a regime is frequently referred to as
the unitary regime because the infinite scattering length |akF| → ∞ is the “unitarity limit” where the
s-wave cross section reaches the maximal value allowed by the unitarity constraint of the scattering
matrix.

The Fermi gas in the unitarity limit, which we refer to as the unitary Fermi gas, has attracted
intense attention across many subfields of physics. As we mentioned, the system can be exper-
imentally realized in atomic traps using the Feshbach resonance and has been extensively stud-
ied [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 6, 32, 33, 7, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46].
Furthermore, since the fermion density is the only dimensionful scale of the unitary Fermi gas, its
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properties are expected to be universal, i.e., independent of details of the interparticle interaction.
The unitary Fermi gas is thus an idealization of dilute nuclear matter [47], where the neutron-neutron
s-wave scattering length ann ' −18.5 fm is much larger than the effective range r0 ' 2.7 fm [48], and
may be relevant to the physics of neutron stars. It has been also suggested that its understanding may
be important for the high-Tc superconductivity [49]. The Fermi gas in the unitary regime provides
a new interesting regime other than the conventional weak-coupling BCS and BEC regimes and is
worthwhile to study experimentally and theoretically.

Experimental achievements

Before going to details of the theoretical treatment of this thesis, we briefly summarize related experi-
mental achievements in the trapped fermionic atoms over the past decade. Typically 105 ∼ 106 atoms
are confined in the optical potential and can be cooled down to the temperature ∼ 0.1 EF using the
laser cooling and evaporative cooling [50], where EF is the Fermi energy of order micro-Kelvin. The
degenerate Fermi gas of atoms was first reported in [51], where the non-classical momentum distribu-
tion and total energy of the gas were observed. The magnetic-field induced Feshbach resonance make
it possible to realize the degenerate Fermi gas in the strongly-interacting regime where |a|kF � 1. Ex-
pansion dynamics of such a strongly-interacting degenerate Fermi gas was studied and an anisotropic
expansion was observed when the gas is released from the optical trap [22]. The hydrodynamics of
expanding strongly-interacting fermionic systems has also attracted special interest of nuclear physics
community in connection with the strongly-interacting matter created in the experiment of Relativistic
Heavy Ion Collisions [52, 53, 54, 55, 56, 57].

The next goal after creating the degenerate Fermi gas of atoms in the strongly-interacting regime
was to establish the superfluidity. First a long-lived molecular gas was created from the atomic Fermi
gas using the Feshbach resonance [25, 26, 27, 28, 32] and the condensation of the weakly bound
molecules was observed on the BEC side akF > 0 [29, 30, 31, 33, 36, 40]. The BEC of the bound
molecules formed by fermionic atoms is in complete analogy with that of bosonic atoms achieved
earlier using 87Rb or 23Na [58, 59]. The sudden onset of a peak in the momentum distribution of the
molecules was reported indicating the phase transition to the BEC state. Soon after the realization of
the molecular condensates on the BEC side, the condensation of fermionic atom pairs was observed
on the BCS side akF < 0 [6, 7]. Here a pairwise projection of the fermionic atoms onto molecules
by a rapid sweep from negative a to positive a was used to measure the momentum distribution of
the fermionic atom pairs. As an evidence of the superfluidity, collective excitations of the trapped
Fermi gas were studied, where the measured frequencies and damping rates are plausibly explained
assuming the superfluidity [34, 35, 38]. Another evidence of the superfluidity was an appearance of
the pairing gap measured using the radio frequency spectroscopy [37]. The critical temperature as an
onset of the superfluidity was presented from the measurement of the heat capacity [39]. Finally the
definitive evidence of the superfluidity was provided by the observation of vortex lattices in a rotating
Fermi gas [41].
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The striking properties of these trapped atomic systems lay not only on the tunability of the in-
teraction strength between atoms but also on their high designability of various interesting systems.
For example, Fermi gases with a population imbalance between the two fermion components (finite
polarization) have been already realized and studied [42, 43, 44, 45, 46]. The phase separation in the
trapping potential was observed where the superfluid core with equal densities is surrounded by the
normal gas with unequal densities. Also the realization of Feshbach resonances is available between
two different atomic species [60, 61]. While such Feshbach resonances are currently achieved only
between fermionic and bosonic atoms, it may be possible in future to realize the Feshbach resonances
between two different species of fermionic atoms. It will bring us a new ground to investigate a
Fermi gas with finite mass difference between different fermion species. Such asymmetric systems
of fermions with density and mass imbalances will be also interesting as a prototype of high den-
sity quark matter in the core of neutron stars, where the density and mass asymmetries exist among
different quark flavors [62, 63, 64, 65, 66].

Theoretical treatment and ε expansion

The breathtaking experimental progresses with high tunability and designability have stimulated var-
ious theoretical studies in the new regime of the unitarity limit. The austere simplicity of the unitary
Fermi gas, however, implies great difficulties for theoretical treatment, because there seems to be no
parameter for a perturbation theory. The usual Green’s function techniques for the many-body prob-
lem is completely unreliable here since the expansion parameter akF becomes infinite in the unitarity
limit. Although the mean-field type approximations (with or without fluctuations) are often adopted to
give a qualitative picture of the BCS-BEC crossover problem, they are not controlled approximations
in the strong-coupling unitary regime [17, 18, 19, 20, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. A
challenging problem for many-body theorists is to establish a systematic approach to investigate the
Fermi gas in the unitary regime.

At very high temperatures, a systematic expansion in terms of the fugacity z = eµ/T (virial expan-
sion) is applicable where µ denotes the chemical potential and T denotes the temperature [79, 80, 81].
However, the virial expansion is restricted to the normal state and can not describe the phase transition
to the superfluid state. Considerable progress on the study of the unitary Fermi gas has been recently
made by Monte Carlo simulations both at zero temperature [82, 83, 84, 85, 86, 87] and finite temper-
ature [88, 89, 90, 91, 92], but these simulations also have various limitations. For example, Monte
Carlo simulations can not treat systems with a population or mass imbalance between two fermion
species due to fermion sign problem. Also they can not answer questions related to dynamics like the
dynamical response functions and the kinetic coefficients. Analytic treatments of the problem at any
temperature, if exist, will be extremely useful and give insights that are not obvious from numerics.

Recently we have proposed a new analytic approach for the unitary Fermi gas based on the sys-
tematic expansion in terms of the dimensionality of space [93, 94, 95], utilizing the specialty of four
or two spatial dimensions in the unitarity limit [96]. In this approach, one would extend the problem
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to arbitrary spatial dimensions d with keeping the scattering length to be infinite |akF| → ∞ (vertical
axis in Fig. 1.1). Then we find two non-interacting limits on the d axis, which are d = 4 and d = 2.
Accordingly, slightly below four or slightly above two spatial dimensions, the unitary Fermi gas be-
comes weakly-interacting, where a “perturbative expansion” is available. Actually the unitary Fermi
gas near four spatial dimensions can be understood as a weakly-interacting system of fermionic and
bosonic quasiparticles, while near two spatial dimensions it reduces to a weakly-interacting Fermi
gas. A small parameter of the perturbative expansion there is ε = 4 − d near four dimensions or
ε̄ = d − 2 near two dimensions. The weakness of the interaction near four and two spatial dimen-
sions can be also seen from the viewpoint of the renormalization group fixed point; the fixed point
describing the unitarity limit approaches to the non-interacting Gaussian fixed point near d = 4 and
d = 2 [97, 98]. After performing all calculations treating ε or ε̄ as a small expansion parameter, results
for the physical case of three spatial dimensions are obtained by extrapolating the series expansions
to ε (ε̄) = 1, or more appropriately, by matching the two series expansions.

The ε expansion around four spatial dimensions has been developed to calculate thermodynamic
functions and the fermion quasiparticle spectrum at zero temperature near the unitarity limit to the
leading and next-to-leading orders in ε. The results were found to be quite consistent with those
obtained by the Monte Carlo simulations and the experiments [93, 94]. Then the ε expansion was
extended to investigate the thermodynamics of the unitary Fermi gas at finite temperature T , below
and above the critical temperature T = Tc [95]. It should be noted that the critical dimension of a
superfluid-normal phase transition is also four, which makes weak-coupling calculations reliable at
any temperature for the small ε. The ε expansion was also successfully applied to study atom-dimer
and dimer-dimer scatterings in vacuum and found to give results quite close to non-perturbative nu-
merical solutions at d = 3 [99]. Thus there are compelling reasons to hope that the limit d → 4 is not
only theoretically interesting but also practically useful, despite the fact that the expansion parameter
ε is one at d = 3. We recall that the ε expansion has been extremely fruitful in the theory of the sec-
ond order phase transition [100]. In addition to the above-mentioned works, the phase structure of the
polarized Fermi gas near the unitarity limit has been investigated based on the ε expansion [94, 101].
The next-to-next-to-leading order correction to the thermodynamic functions at zero temperature was
computed in [102] and the BCS-BEC crossover was studied by the ε expansion [103]. Very recently,
another systematic approach to the Fermi gas in the unitary regime has been proposed; the two-
component Fermi gas is generalized to a 2N-component Fermi gas with Sp(2N) invariant interaction.
Then the inverse of the component number 1/N is used for the small expansion parameter [98, 104].

In this thesis, we give a comprehensive study of the unitary Fermi gas from the perspective of the ε
expansion. We start with the study of two-body scattering in vacuum in the unitarity limit for arbitrary
spatial dimensions 2 < d < 4, which will clarify why and how systematic expansions around four and
two spatial dimensions are possible for the unitary Fermi gas (Chap. 2). In Chap. 3, we give a detailed
account of the ε expansion for the unitary Fermi gas and show the results on the thermodynamic
functions and the fermion quasiparticle spectrum in the unitary regime to the leading and next-to-
leading orders in ε. Then the ε expansion is applied to the unitary Fermi gas with unequal densities
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of two components, which we call “polarized” Fermi gas. The phase structure of the polarized Fermi
gas as a function of the two-body binding energy is investigated with equal fermion masses in Chap. 4
and with unequal fermion masses in Chap 5. We also show in Chap. 6 that there exists a systematic
expansion for the Fermi gas in the unitarity limit around two spatial dimensions. In Chap. 7, we
make an exploratory discussion to connect the two systematic expansions around four and two spatial
dimensions in order to extract results at d = 3. Chaps. 8 and 9 are devoted to the thermodynamics
of the unitary Fermi gas at finite temperature. In Chap. 8, analytic formulas for the thermodynamic
functions in the low temperature region T � Tc are shown as functions of the temperature to the
lowest order in ε. The behavior of the thermodynamic functions above Tc to the leading and next-to-
leading orders in ε is discussed in Chap. 9. In particular, we put emphasis on the determination of the
critical temperature Tc and the thermodynamic functions at Tc by matching the ε expansion with the
expansion around two spatial dimensions. All the results thus obtained are compared to those from
the recent Monte Carlo simulations. Finally, summary and concluding remarks are given in Chap. 10.

The chapters 2–7 in this thesis are based on the author’s works in collaboration with D. T. Son [93,
94, 105], while the chapters 8 and 9 are based on the author’s paper [95].



Chapter 2

Two-body scattering in vacuum

The special role of four and two spatial dimensions in the unitarity limit has been recognized by
Nussinov and Nussinov [96]. They noticed that at infinite scattering length, the wavefunction of two
fermions with opposite spin behaves like R(r) = 1/rd−2 at small r, where r is the separation between
two fermions. Therefore, the normalization integral of the wavefunction takes the form of∫

drR(r)2 =

∫
r0

dr
1

rd−3 , (2.1)

which has a singularity at r0 → 0 in high dimensions d ≥ 4. From this observation, it is concluded
that the unitary Fermi gas at d → 4 become a non-interacting Bose gas. In particular, at fixed Fermi
momentum the energy per particle goes to zero as d → 4 from below. On the other hand, in low
dimensions d ≤ 2, the attractive potential with any strength causes zero energy bound states, and
hence, the threshold of the appearance of the first two-body bound state corresponds to the zero
coupling. It follows that the Fermi gas in the unitary limit corresponds to a non-interacting Fermi
gas at d → 2 and the energy per particle approaches to that of the free Fermi gas in this limit. This
singular character of d = 2 was also recognized in the earlier work [106].

In this Chapter, we shall give precise meaning for their intuitive arguments at d = 4 and 2 from the
perspective of diagrammatic approach. These two dimensions will provide foundations to construct
systematic expansions for the unitary Fermi gas. Here we concentrate on the two-body problem.

2.1 Near four spatial dimensions

The system under consideration is described by a Lagrangian density with a local four-Fermi interac-
tion (here and below ~ = 1):

L =
∑
σ=↑,↓

ψ†σ

(
i∂t +

∇2

2mσ

)
ψσ + c0 ψ

†

↑
ψ†
↓
ψ↓ψ↑, (2.2)

where mσ (= m↑,m↓) is the fermion mass and c0 is the bare attractive coupling between two fermions.
Here we consider the fermions with equal masses m↑ = m↓ = m and generalize our discussion to the
unequal mass case in Chap. 5.

7
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'
↑

↓

ig ig

iDd → 4

iḡ2

'
d → 2

=

∞∑

n=0

1 niT · · ·

Figure 2.1: Two-fermion scattering in vacuum in the unitarity limit. The T -matrix near four spatial
dimensions is expressed by the propagation of boson with the small effective coupling g, while it
reduces to a contact interaction with the small effective coupling ḡ2 near two spatial dimensions.

The T -matrix of the two-body scattering is given by the geometric series of bubble diagrams
depicted in Fig. 2.1. As a result of the summation, its inverse can be written as

T (p0,p)−1 =
1
c0
+ i

∫
dk0dk

(2π)d+1

1
p0
2 − k0 − εp2 −k + iδ

1
p0
2 + k0 − εp2 +k + iδ

=
1
c0
−

∫
dk

(2π)d

1
2εk − p0 +

εp
2 − iδ

,

(2.3)

where εp = p2/2m is the kinetic energy of non-relativistic particles. The integral in Eq. (2.3) is
divergent and needs to be regularized. In this thesis we shall work in dimensional regularization:
integrals are evaluated for those values of d where they converge [for the integral in Eq. (2.3) this
corresponds to d < 2] and then analytically continued to other values of d. In this regularization
scheme, the integral in Eq. (2.3) vanishes for p0 = p = 0 (scatterings at threshold). Therefore the
limit of infinite scattering length where T (0,0) = ∞ corresponds to c0 = ∞.

The integration over k in Eq. (2.3) can be evaluated explicitly

T (p0,p)−1 = −Γ

(
1 −

d
2

) ( m
4π

) d
2
(
−p0 +

εp

2
− iδ

) d
2−1

. (2.4)

This expression has a pole at d = 4 originating from the ultraviolet divergence of the k integration.
Substituting d = 4−ε and expanding in terms of ε, the T -matrix near four spatial dimensions becomes

iT (p0,p) = −
8π2ε

m2

i
p0 −

εp
2 + iδ

+ O(ε2). (2.5)

If we define

g2 =
8π2ε

m2 (2.6)

and
D(p0,p) =

(
p0 −

εp

2
+ iδ

)−1
. (2.7)
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the T -matrix, to leading order in ε, can be written as

iT (p0,p) ' (ig)2iD(p0,p). (2.8)

The function D(p0,p) is the propagator of a particle with mass 2m. It is natural to interpret this
particle a bound state of two fermions at threshold. We will refer to this particle simply as the boson.
Eq. (2.8) states that the two-fermion scattering near four spatial dimensions can be thought of as a
process that occurs through the propagation of an intermediate boson, as depicted in Fig. 2.1. The
effective coupling of two fermions into the boson is given by g. An important point is that the effective
coupling g ∼ ε1/2 is small near four dimensions. This fact indicates the possibility to construct a
perturbative expansion for the unitary Fermi gas near four spatial dimensions in terms of the small
parameter ε.

2.2 Near two spatial dimensions

Similarly, the perturbative expansion around two spatial dimensions is possible. This is because the
inverse of T -matrix in Eq. (2.4) has another pole at d = 2. Substituting d = 2 + ε̄ and expanding in
terms of ε̄, the T -matrix near two spatial dimensions becomes

iT (p0,p) = i
2π
m
ε̄ + O(ε̄2). (2.9)

If we define the effective coupling at 2 + ε̄ dimensions as

ḡ2 =
2π
m
ε̄, (2.10)

the T -matrix to the leading order in ε̄ can be written as

iT (p0,p) ' iḡ2. (2.11)

We see that the T -matrix near two spatial dimensions reduces to that of a contact interaction with the
small effective coupling ḡ2 ∼ ε̄ as depicted in Fig. 2.1. In this case, the boson propagator D(p) in
Eq. (2.8) corresponds to just a constant −1. We note that the same effective couplings near four and
two spatial dimensions in Eqs. (2.6) and (2.10) can be obtained by the fixed point of the renormaliza-
tion group flow describing the unitarity limit [97, 98]. We defer our discussion of the expansion over
ε̄ = d − 2 to Chap. 6 and concentrate on the expansion over ε = 4 − d.

2.3 Binding energy of two-body state

We shall be interested not only in the physics right at the unitarity point, but also in the vicinity of it.
In other words, we shall assume that 1/c0 can be nonzero in dimensional regularization. The case of
c0 < 0 corresponds to the BEC side of the unitarity point, and c0 > 0 corresponds to the BCS side.
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To facilitate a comparison with the physics in three dimensions, we shall find the relation between the
coupling c0, assuming that we are on the BEC side, c0 < 0, and the binding energy of the two-body
state at arbitrary spatial dimensions 2 < d < 4.

The binding energy εb, defined to be positive εb > 0, is obtained as the location of the pole of the
T -matrix at zero external momentum: T (−εb,0)−1 = 0. From Eqs. (2.3) and (2.4), we see c0 is related
with εb via the following equation

1
c0
= Γ

(
1 −

d
2

) ( m
4π

) d
2
ε

d
2−1

b . (2.12)

Near four spatial dimensions, the relationship between εb and c0 to the next-to-leading order in ε =
4 − d is given by

1
c0
' −

εb

2ε

( m
2π

)2 [
1 +

ε

2
(1 − γ)

] (mεb

4π

)− ε2
. (2.13)

In three spatial dimensions, the relationship between εb and the scattering length a = −mc0/4π be-
comes εb = (ma2)−1. If we recall that the Fermi energy is related to kF through εF = k 2

F /(2m), one
finds the following relationship holds at d = 3:

εb

εF
=

2
(akF)2 . (2.14)

We will use these relations to compare results in the expansion over ε = 4 − d with the physics at
three spatial dimensions.



Chapter 3

Unitary Fermi gas around four spatial
dimensions

3.1 Lagrangian and Feynman rules

Employing the idea of the previous Chapter, we now construct the ε expansion for the Fermi gas near
the unitarity limit. We start with the Lagrangian density in Eq. (2.2) with chemical potentials µ↑ and
µ↓ introduced to two different components:

L =
∑
σ=↑,↓

ψ†σ

(
i∂t +

∇2

2m
+ µσ

)
ψσ + c0 ψ

†

↑
ψ†
↓
ψ↓ψ↑. (3.1)

After making the Hubbard–Stratonovich transformation [107, 108], the Lagrangian density in the
Nambu–Gor’kov formalism can be written as

L = Ψ†
(
i∂t +

σ3∇2

2m
+ µσ3 + H

)
Ψ −

1
c0
φ∗φ + Ψ†σ+Ψφ + Ψ

†σ−Ψφ
∗, (3.2)

where Ψ = (ψ↑, ψ
†

↓
)T is a two-component Nambu–Gor’kov field, and σ1,2,3 and σ± = 1

2 (σ1 ± iσ2) are
the Pauli matrices [110, 109]. We define the average chemical potential as µ = (µ↑ + µ↓)/2 and the
chemical potential difference as H = (µ↑ − µ↓)/2.

The ground state at finite density system (at least when H = 0) is a superfluid state where φ
condenses: 〈φ〉 = φ0 with φ0 being chosen to be real. With that in mind we expand φ around its
vacuum expectation value φ0 as

φ = φ0 + gϕ, g =
(8π2ε)1/2

m

(mφ0

2π

)ε/4
. (3.3)

Here we introduced the effective coupling g ∼ ε1/2 in Eq. (2.6). The extra factor (mφ0/2π)ε/4 was
chosen so that ϕ has the same dimension as a non-relativistic field 1. Since the Lagrangian density in

1The choice of the extra factor is arbitrary, if it has the correct dimension, and does not affect the final results because
the difference can be absorbed into the redefinition of the fluctuation field ϕ. The particular choice of g in Eq. (3.3) will
simplify the form of loop integrals in the intermediate steps.

11



12 Chapter 3. Unitary Fermi gas around four spatial dimensions

igσ+ igσ−

iµσ3 −2iµiµB

−iΠ0−igφ0/c0

−igφ0/c0

iG

iD

propagators L1 vertices L2 vertices

Figure 3.1: Feynman rules from the Lagrangian density in Eq. (3.4). The two vertices on the last
column come from L2, while the rest from L1. Solid (dotted) lines represent the fermion (boson)
propagator iG (iD).

Eq. (3.2) does not have the kinetic term for the boson field ϕ, we add and subtract its kinetic part by
hand. In other words, we rewrite the Lagrangian density as a sum of three parts, L = L0 + L1 + L2,
where

L0 = Ψ
†

(
i∂t + H +

σ3∇2

2m
+ σ+φ0 + σ−φ0

)
Ψ + ϕ∗

(
i∂t +

∇2

4m

)
ϕ −

φ 2
0

c0
, (3.4)

L1 = gΨ†σ+Ψϕ + gΨ†σ−Ψϕ∗ + µΨ†σ3Ψ +

(
2µ −

g2

c0

)
ϕ∗ϕ −

gφ0

c0
ϕ −

gφ0

c0
ϕ∗ , (3.5)

L2 = −ϕ
∗

(
i∂t +

∇2

4m

)
ϕ − 2µϕ∗ϕ . (3.6)

As we shall soon see, φ0 coincides, to leading order in ε, to the energy gap in the fermion spectrum. In
the unitarity limit, we have g2/c0 = 0. When c0 is finite and negative, −g2/c0 ' εb gives the binding
energy of boson to the leading order in ε from Eq. (2.13). Throughout this thesis, we consider the
vicinity of the unitarity point where g2/c0 can be treated as a small quantity 2.

The partL0 represents the Lagrangian density of non-interacting fermion quasiparticles and bosons
with the mass 2m, whose kinetic terms are introduced by hand in L0 and taken out in L2. The propa-
gators of fermion and boson are generated by L0. The fermion propagator G is a 2 × 2 matrix,

G(p0,p) =
1

(p0 + H)2 − E 2
p + iδ

p0 + H + εp −φ0

−φ0 p0 + H − εp

 , (3.7)

where Ep =
√
ε 2
p + φ

2
0 is the excitation energy of the fermion quasiparticle. We use the iδ prescription

where δ = 0+ for positive p0 while δ = 0− for negative p0. The boson propagator D is given by the
same form as in Eq. (2.7),

D(p0,p) =
(
p0 −

εp

2
+ iδ

)−1
. (3.8)

2The precise meaning of the “small quantity” here is that g2/c0 compared to φ0 is of the order ε, g2/c0 ∼ εφ0.
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O(ε−1) N (fermion density)
O(ε−1/2) εF (Fermi energy)
O(1) φ0 (condensate), ∆ (energy gap)

P (pressure), E (energy density)
O(ε) µ, µB (chemical potentials)

Table 3.1: Summary of powers of ε in various quantities at zero temperature when the condensate φ0

is regarded as O(1).

The parts L1 and L2 generate the vertices which are depicted in Fig. 3.1. The first two terms
in L1 represent the fermion-boson interactions, whose coupling is proportional to g and small in the
limit ε → 0. This coupling originates from the two-body scattering in vacuum in the unitarity limit
which was studied in the previous Chapter (see Fig. 2.1). The third and fourth terms are insertions of
chemical potentials, µ and the boson chemical potential

µB ≡ 2µ −
g2

c0
, (3.9)

to the fermion and boson propagators, respectively. We treat these two terms as perturbations because
µ will turn out to be small, µ/φ0 ∼ ε, and we limit ourselves to the vicinity of the unitarity point where
we can regard g2/c0 to be so small that µB/φ0 ∼ ε. The last two terms in L1 give tadpoles to the ϕ and
ϕ∗ fields, which are proportional to −igφ0/c0. The condition of cancellation of tadpole diagrams will
determine the value of the condensate φ0.

Finally, we treat the two terms in L2 as additional vertices for the boson propagator as depicted in
the last column of Fig. 3.1, which are proportional to −iΠ0 and −2iµ where

Π0(p0,p) = p0 −
εp

2
. (3.10)

These two vertices play roles of counter terms so as to avoid double counting of certain types of
diagrams which are already taken into L0 and L1. In the latter part of this Chapter, we will consider
the unpolarized case with H = 0 at zero temperature.

3.2 Power counting rule of ε

Near unitarity, we can use the same power counting rule of ε developed in the unitarity limit [93]. Let
us first consider Feynman diagrams constructed only from L0 and L1, without the vertices from L2.
We make a prior assumption µ/φ0 ∼ ε, which will be checked later, and consider φ0 to be O(1). Each
pair of boson-fermion vertices is proportional to g2 ∼ ε and hence brings a factor of ε. Also, each
insertion of µ ∼ ε or µB = 2µ − g2/c0 ∼ ε brings another factor of ε. Therefore the naive power of ε
for a given diagram is Ng/2 + Nµ, where Ng is the number of couplings g from L1. Nµ = NµF + NµB is
the sum of the number of µ insertions to the fermion line and µB insertions to the boson line.
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However, this naive counting does not take into account the fact that there might be inverse powers
of ε coming from integrals which have ultraviolet divergences at d = 4. Each loop integral in the
ultraviolet region behaves as ∫

dp0dp ∼

∫
dp εp ∼ p6, (3.11)

while each fermion or boson propagator behaves, at worst, as G(p) ∼ p−2 or D(p) ∼ p−2. Therefore,
a given diagram may diverges as ∼ pD withD being the superficial degree of divergence given by

D = 6L − 2PF − 2PB. (3.12)

Here L is the number of loop integrals and PF(B) is the number of fermion (boson) propagators. From
the similar argument to the relativistic field theories [111], one can derive the following relations
including the number of external fermion (boson) lines EF(B):

L = (PF − NµF) + (PB − NµB) − Ng + 1,

Ng = (PF − NµF) +
EF

2
= 2(PB − NµB) + EB.

(3.13)

With the use of these relations, the superficial degree of divergenceD is written as

D = 6 − 2(EF + EB + Nµ), (3.14)

which shows that the inverse powers of ε appear only in diagrams with no more than three external
lines and chemical potential insertions. This is similar to the situation in quantum electrodynamics
where infinities occur only in electron and photon self-energies and the electron-photon triple vertex.

However, this estimation of D is actually an over-estimate: for many diagrams the real degree
of divergence is smaller than given in Eq. (3.14). To see that we split G(p) into the retarded and
advanced parts, G(p) = GR(p)+GA(p), where GR (GA) has poles only in the lower (upper) half of the
complex p0 plane:

G11(p) =
p0 + εp

p 2
0 − E 2

p + iδ
=

Ep + εp
2Ep

(
p0 − Ep + iδ

) + Ep − εp
2Ep

(
p0 + Ep − iδ

) ,
G22(p) =

p0 − εp

p 2
0 − E 2

p + iδ
=

Ep − εp
2Ep

(
p0 − Ep + iδ

) + Ep + εp
2Ep

(
p0 + Ep − iδ

) ,
G12(p) = G21(p) =

−φ0

p 2
0 − E 2

p + iδ
=

−φ0

2Ep
(
p0 − Ep + iδ

) + −φ0

2Ep
(
p0 + Ep − iδ

) .
(3.15)

From these expressions, it is easy to see that the ultraviolet behaviors of different components of the
propagators are different:

GR
11(p) ∼ GA

22(p) ∼ DR(p) ∼ p−2, (3.16)

GR,A
12 (p) ∼ GR,A

21 (p) ∼ p−4, GA
11(p) ∼ GR

22(p) ∼ p−6.
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Note that the boson propagator D(p) has a pole on the lower half plane of p0, we have only the
retarded Green’s function for boson, DA(p) = 0.

From these analytic properties of the propagators in the ultraviolet region and the vertex structures
in L1 as well as the relation of Eq. (3.14), one can show that there are only four skeleton diagrams
which have the 1/ε singularity near four dimensions. They are one-loop diagrams of the boson self-
energy [Figs. 3.2(a) and 3.2(c)], the ϕ tadpole [Fig. 3.2(e)], and the vacuum diagram [Fig. 3.2(g)]. We
shall examine these apparent four exceptions of naive power counting rule of ε one by one.

The first diagram, Fig. 3.2(a), is the one-loop diagram of the boson self-energy. The frequency
integral can be done explicitly, yielding

−iΠa(p) = −g2
∫

dk
(2π)d+1 G11

(
k +

p
2

)
G22

(
k −

p
2

)
= ig2

∫
dk

(2π)d

1
4Ek−p2 Ek+p2

(3.17)

×

 (Ek−p2 + εk−p2 )(Ek+p2 + εk+p2 )

Ek−p2 + Ek+p2 − p0 − iδ
+

(Ek−p2 − εk−p2 )(Ek+p2 − εk+p2 )

Ek−p2 + Ek+p2 + p0 − iδ

 .
The integral over k is ultraviolet divergent at d = 4 and has a pole at ε = 0. Thus it is O(1) by itself
instead of O(ε) according to the naive counting. The residue at the pole is

Πa(p) = −g2
∫

dk

(2π)d

(
2εk − p0 +

εp

2

)−1
+ · · ·

= −

(
p0 −

εp

2

)
+ O(ε),

(3.18)

which is cancelled out exactly by adding the vertex Π0 in L2. Therefore the diagram of the type in
Figs. 3.2(a), when combined with the vertex from L2 in Fig. 3.2(b), conforms to the naive ε power
counting, i.e., is O(ε).

Similarly, the diagram in Fig. 3.2(c) representing the boson self-energy with one µ insertion is
given by

− iΠc(p) = 2µ g2
∫

dk
(2π)d+1

[
G11

(
k +

p
2

)2
−G12

(
k +

p
2

)2
]

G22

(
k −

p
2

)
, (3.19)

which also contains a 1/ε singularity, and is O(ε) instead of the naive O(ε2). The leading part of this
diagram is

Πc(p) = −2µ g2
∫

dk

(2π)d
(2εk)−2 + · · ·

= −2µ + O(ε2),
(3.20)

and is cancelled out by the second vertex from L2. Then the sum of Figs. 3.2(c) and 3.2(d) is again
O(ε2), consistent with the naive power counting.

The ϕ tadpole diagram with one µ insertion in Fig. 3.2(e) is

Ξe = −µg
∫

dk
(2π)d+1 [G11(k) −G22(k)] G21(k)

= igµφ0

∫
dk

(2π)d

εk

2E 3
k

= 2i
µφ0

g
+ O(ε3/2),

(3.21)
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+ = O(ε)

+

(b)

+

+

= O(ε2)

= O(ε3/2)

(c)

(e)

(d)

(f)

+

= O(1)

(g)

(a)

Figure 3.2: Four apparent exceptions of naive power counting rule of ε, (a, c, e, g). The boson self-
energy diagram, (a) or (c), is combined with the vertex from L2, (b) or (d), to restore the naive ε
counting. The tadpole diagram in (e) cancels with other tadpole diagrams at the minimum of the
effective potential. The vacuum diagram (g) is the only exception of the naive power counting rule of
ε, which is O(1) instead of O(ε).

which is O(ε1/2) instead of the naive O(ε3/2). This tadpole diagram should be cancelled by other
tadpole diagrams of order O(ε1/2) in Fig. 3.2(f),

Ξf = g
∫

dk
(2π)d+1 G21(k) − i

gφ0

c0

= −
ig
2

(mφ0

2π

)2

− i
gφ0

c0
+ O(ε3/2).

(3.22)

The condition of cancellation, Ξe + Ξf = 0, gives the gap equation to determine φ0(µ) to the leading
order in ε. The solution to the gap equation is

φ0 =
2µ
ε
−

2
c0

(
2π
m

)2

+ O(ε). (3.23)

When c0 < 0, this solution can be written in terms of the binding energy εb as φ0 = (2µ + εb)/ε. Now
the previously made assumption µ/φ0 = O(ε) is checked. The condition of cancellation of tadpole
diagrams is automatically satisfied by the minimization of the effective potential as we will see later.

Finally, the one-loop vacuum diagram with one µ insertion in Fig. 3.2(g) also contains the 1/ε
singularity as

iµ
∫

dk
(2π)d+1 [G11(k) −G22(k)] = µ

∫
dk

(2π)d

εk
Ek

= −
µ

ε

(mφ0

2π

)2

+ O(ε).
(3.24)
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+ +

O(1) O(1) O(ε)

Figure 3.3: Vacuum diagrams contributing to the effective potential up to the next-to-leading order in
ε. The second diagram is O(1) instead of naive O(ε) because of the 1/ε singularity.

The leading part of this diagram is O(1) instead of naive O(ε) and can not be cancelled by any other
diagrams. Therefore, Fig. 3.2(g) ∼ O(1) is the only exception of our naive power counting rule of ε.

Thus, we can now develop a diagrammatic technique for the Fermi gas near the unitarity limit
where g2/|c0| ∼ µ in terms of the systematic expansion of ε = 4 − d. The power counting rule of ε is
summarized as follow:

1. We consider µ/φ0 ∼ ε and regard φ0 as O(1).

2. For any Green’s function, we write down all Feynman diagrams according to the Feynman rules
in Fig. 3.1 using the propagators from L0 and the vertices from L1.

3. If there is any subdiagram of the type in Fig. 3.2(a) or Fig. 3.2(c), we add a diagram where the
subdiagram is replaced by a vertex from L2, Fig. 3.2(b) or Fig. 3.2(d).

4. The power of ε for the given Feynman diagram will be O(εNg/2+Nµ), where Ng is the number of
couplings g and Nµ is the number of chemical potential insertions.

5. The only exception is the one-loop vacuum diagram with one µ insertion in Fig. 3.2(g), which
is O(1) instead of the naive O(ε).

We note that the sum of all tadpole diagrams in Figs. 3.2(e) and 3.2(f) vanishes with the solution of
the gap equation φ0.

3.3 Effective potential to leading and next-to-leading orders

We now perform calculations to leading and next-to-leading orders in ε, employing the Feynman rules
and the ε power counting that have just been developed. To find the dependence of φ0 on µ, we use
the effective potential method [111] in which this dependence follows from the the minimization of
the effective potential Veff(φ0). The effective potential at the tree level is given by

V0(φ0) =
φ 2

0

c0
. (3.25)
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Up to the next-to-leading order, the effective potential receives contributions from three vacuum dia-
grams drawn in Fig. 3.3: fermion loops with and without a µ insertion and a fermion loop with one
boson exchange.

The contributions from two one-loop diagrams are O(1) and given by

V1(φ0) = i
∫

dp
(2π)d+1 Tr

[
ln G−1(p) + µσ3G(p)

]
= −

∫
dp

(2π)d

(
Ep − µ

εp

Ep

)
.

(3.26)

By changing the integration variable to z = (εp/φ0)2 and with the use of the formula∫ ∞

0
dz

zα−1

(z + 1)β
=
Γ(α)Γ(β − α)
Γ(β)

, (3.27)

we can perform the integration over p that results in

V1(φ0) = −

(
mφ0
2π

) d
2

2Γ( d
2 )

Γ(d
4 )Γ(−1

2 −
d
4 )

Γ(−1
2 )

φ0 −
Γ(d

4 +
1
2 )Γ(−d

4 )

Γ(1
2 )

µ

 . (3.28)

Substituting d = 4 − ε and expanding in terms of ε up to O(ε), we obtain the effective potential from
the one-loop diagrams as

V1(φ0) =
φ0

3

[
1 +

7 − 3(γ + ln 2)
6

ε

] (mφ0

2π

)d/2

−
µ

ε

[
1 +

1 − 2(γ − ln 2)
4

ε

] (mφ0

2π

)d/2

+ O(ε2), (3.29)

where γ ≈ 0.57722 is the Euler-Mascheroni constant.
The contribution of the two-loop diagram is O(ε) and given by

V2(φ0) = g2
∫

dp dq
(2π)2d+2 Tr

[
G(p)σ+G(q)σ−

]
D(p − q)

= g2
∫

dp dq
(2π)2d+2 G11(p)G22(q)D(p − q). (3.30)

Performing the integrations over p0 and q0, we obtain

V2(φ0) = −
g2

4

∫
dp dq

(2π)2d

(Ep − εp)(Eq − εq)
EpEq(Ep + Eq + εp−q/2)

. (3.31)

Since this is a next-to-leading order diagram and the integral converges at d = 4, we can evaluate it at
d = 4. Changing the integration variables to x = εp/φ0, y = εq/φ0, and cos θ = p̂ · q̂, the integral can
be expressed by

V2(φ0) = −ε
(mφ0

2π

)d/2 φ0

π

∫ ∞

0
dx

∫ ∞

0
dy

∫ π

0
dθ xy sin2 θ

[ f (x) − x][ f (y) − y]

f (x) f (y)
[
g(x, y) −

√
xy cos θ

] (3.32)

with f (x) =
√

x2 + 1 and g(x, y) = f (x) + f (y) + 1
2 (x + y). The integration over θ can be performed

analytically to lead to

V2(φ0) = −Cε
(mφ0

2π

)d/2

φ0, (3.33)
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where the constant C is given by a two-dimensional integral

C =
∫ ∞

0
dx

∫ ∞

0
dy

[ f (x) − x][ f (y) − y]
f (x) f (y)

[
g(x, y) −

√
g2(x, y) − xy

]
. (3.34)

The numerical integrations over x and y result in

C ≈ 0.14424. (3.35)

Now, gathering up Eqs. (3.25), (3.29), and (3.32), we obtain the effective potential up to the next-
to-leading order in ε,

Veff(φ0) = V0(φ0) + V1(φ0) + V2(φ0) (3.36)

=
φ 2

0

c0
+

[
φ0

3

{
1 +

7 − 3(γ + ln 2)
6

ε − 3Cε
}
−
µ

ε

{
1 +

1 − 2(γ − ln 2)
4

ε

}] (mφ0

2π

)d/2

+ O(ε2).

The condition of the minimization of the effective potential in terms of φ0 gives the gap equation;
∂Veff/∂φ0 = 0. The solution of the gap equation satisfies

φ0 =
2µ
ε

[1 + (3C − 1 + ln 2) ε] −
2φ ε/20

c0

(
2π
m

)d/2 [
1 +

(
3C − 1 +

γ + ln 2
2

)
ε

]
. (3.37)

Using the relation of c0 with the binding energy of boson εb in Eq. (2.12), we can rewrite the solution
of the gap equation in terms of εb up to the next-to-leading order in ε as

φ0 =
2µ
ε

[1 + (3C − 1 + ln 2) ε] +
εb

ε

[
1 +

(
3C −

1
2
+ ln 2 −

1
2

ln
εb

φ0

)
ε

]
. (3.38)

We note that the leading term in Eq. (3.38) could be reproduced using the mean field approximation,
but the O(ε) corrections are not. The O(ε) correction proportional to C is the result of the summation
of fluctuations around the classical solution and is beyond the mean field approximation.

3.4 Thermodynamic quantities near unitarity

The value of the effective potential Veff at its minimum determines the pressure P = −Veff(φ0) at a
given chemical potential µ and a given binding energy of boson εb. Substituting the dependence of φ0

on µ and εb in Eq. (3.38), we obtain the pressure as

P =
φ0

6

[
1 +

(
17
12
− 3C −

γ + ln 2
2

)
ε −

3εb

4φ0

] (mφ0

2π

)d/2

. (3.39)

The fermion number density N is determined by differentiating the pressure in terms of µ as

N =
∂P
∂µ
=

1
ε

[
1 +

1 − 2γ + 2 ln 2
4

ε

] (mφ0

2π

)d/2

. (3.40)
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Then the Fermi energy from the thermodynamic of free gas in d spatial dimensions is given by

εF =
2π
m

[
1
2
Γ

(
d
2
+ 1

)
N
]2/d

=
φ0

ε2/d

(
1 −

1 − ln 2
4

ε

)
. (3.41)

Note that non-trivial dependences on ε like
√
ε and ln ε appear by taking N ∼ ε−1 to the power of 2/d.

From Eqs. (3.38) and (3.41), we can determine the ratio of the chemical potential and the Fermi
energy µ/εF near the unitary limit as

µ

εF
=
ε3/2

2
exp

(
ε ln ε

8 − 2ε

) [
1 −

(
3C −

5
4

(1 − ln 2)
)
ε

]
−
εb

2εF

[
1 +

ε

2
+
ε ln ε

4
−
ε

2
ln
εb

εF

]
. (3.42)

The logarithmic terms in the second line originates by introducing φ0 = ε1/2εF to the ln εb/φ0 term
in Eq. (3.38). The first term in Eq. (3.42) gives the universal parameter of the unitary Fermi gas
ξ ≡ µ/εF|εb=0 as

ξ =
ε3/2

2

[
1 +

ε ln ε
8
−

(
3C −

5
4

(1 − ln 2)
)
ε

]
=

1
2
ε3/2 +

1
16
ε5/2 ln ε − 0.0246 ε5/2 + · · · .

(3.43)

Here we have substituted the numerical value for C ≈ 0.14424 in Eq. (3.35). The smallness of the
coefficient in front of ε5/2 is a result of the cancellation between the two-loop correction and the
subleading terms from the expansion of the one-loop diagrams around d = 4. The O(ε7/2) correction
to the universal parameter ξ was recently computed to find the large correction 0.480 ε7/2 [102]. This
may be related with the asymptotic nature of the ε expansion and some sort of resummation will be
necessary to go beyond the next-to-leading order level.

Using Eqs. (3.39), (3.40), and (3.41), the pressure near the unitarity limit normalized by εFN is
given by

P
εFN

=
2

d + 2
ξ −

εb

8εF
ε. (3.44)

Then the energy density E = µN − P can be calculated from Eqs. (3.42) and (3.44) as

E
εFN

=
d

d + 2
ξ −

εb

2εF

[
1 +

ε

4
+
ε ln ε

4
−
ε

2
ln
εb

εF

]
. (3.45)

The pressure and energy density in the unitarity limit are obtained from ξ via the universal relations
depending only on the dimensionality of space. Partial resummation of logarithmic terms of the
binding energy ln(εb/εF) change the exponent of εb/εF to (εb/εF)1−ε/2 [103].

3.5 Quasiparticle spectrum

The ε expansion we have developed is also useful for the calculations of physical observables other
than the thermodynamic quantities. Here we shall look at the dispersion relation of fermion quasi-

particles. To the leading order in ε, the dispersion relation is given by ωF(p) = Ep =
√
ε 2
p + φ

2
0 ,
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+−iΣ =

iµσ3 =

Figure 3.4: Corrections to the fermion self-energy of order O(ε); a µ insertion and one-loop diagrams.

which has a minimum at zero momentum p = 0 with the energy gap equal to ∆ = φ0 = (2µ + εb)/ε.
The next-to-leading order corrections to the dispersion relation come from three sources: from the
correction of φ0 in Eq. (3.38), from the µ insertion to the fermion propagator, and from the one-loop
self-energy diagrams, −iΣ(p), depicted in Fig. 3.4.

Using the Feynman rules, the one-loop diagram of the fermion self-energy in Fig. 3.4 is given by

− iΣ(p) = g2
∫

dk
(2π)d+1

[
σ+G(k)σ−D(p − k) + σ−G(k)σ+D(k − p)

]
. (3.46)

There are corrections only to the diagonal elements of the self-energy and each element is evaluated
as

Σ11(p) = ig2
∫

dk
(2π)d+1 G22(k)D(p − k)

= −
g2

2

∫
dk

(2π)d

Ek − εk
Ek(Ek + εk−p/2 − p0 − iδ)

,

(3.47)

and

Σ22(p) = ig2
∫

dk
(2π)d+1 G11(k)D(k − p)

=
g2

2

∫
dk

(2π)d

Ek − εk
Ek(Ek + εk−p/2 + p0 − iδ)

.

(3.48)

The dispersion relation of the fermion quasiparticle ωF(p) is obtained as a pole of the fermion
propagator det[G−1(ω,p) + µσ3 − Σ(ω,p)] = 0, which reduces to the following equation:∣∣∣∣∣∣∣ω − εp + µ − Σ11(ω,p) φ0

φ0 ω + εp − µ − Σ22(ω,p)

∣∣∣∣∣∣∣ = 0. (3.49)

To find the O(ε) correction to the dispersion relation, we only have to evaluate the self-energy Σ(ω,p)
with ω given by the leading order solution ω = Ep. Denoting Σ11(Ep,p) and Σ22(Ep,p) simply by
Σ11 and Σ22 and solving Eq. (3.49) in terms of ω, we obtain the dispersion relation of the fermion
quasiparticle as

ωF(p) = Ep +
Σ11 + Σ22

2
+
Σ11 − Σ22 − 2µ

2Ep
εp + O(ε2). (3.50)
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Figure 3.5: Illustration of the dispersion relation of the fermion quasiparticle in the unitarity limit
from the ε expansion. ωF(p) =

√
(εp − ε0)2 + ∆2 in Eq. (3.53) is plotted as a function of εp = p2/2m.

Values on both axes are extrapolated results to ε = 1 in units of the chemical potential µ.

Since the minimum of the dispersion relation will appear at small momentum εp ∼ µ, we can expand
Σ(Ep,p) around zero momentum p = 0 as Σ(Ep,p) = Σ0(φ0,0) + Σ′(φ0,0) εp/φ0 to find the energy
gap of the fermion quasiparticles. Performing the integration over k in Σ analytically, we have

Σ11(Ep,p) = ε (2 − 8 ln 3 + 8 ln 2) φ0 + ε

(
−

8
3
+ 8 ln 3 − 8 ln 2

)
εp, (3.51)

and

Σ22(Ep,p) = ε (−2 − 8 ln 3 + 16 ln 2) φ0 + ε

(
−

7
3
− 8 ln 3 + 16 ln 2

)
εp. (3.52)

Introducing these expressions into Eq. (3.50), we find the fermion dispersion relation around its min-
imum has the following form

ωF(p) ' ∆ +
(εp − ε0)2

2φ0
'

√
(εp − ε0)2 + ∆2. (3.53)

Here ∆ is the energy gap of the fermion quasiparticle, which is given by

∆ = φ0 +
Σ0

11 + Σ
0
22

2
=

[
1 − (8 ln 3 − 12 ln 2) ε + O(ε2)

]
φ0.

(3.54)

The minimum of the dispersion curve is located at a nonzero value of momentum, |p| = (2mε0)1/2,
where

ε0 = µ +
Σ0

22 − Σ
0
11

2
−
Σ′11 + Σ

′
22

2

= µ +
εφ0

2
+ O(ε2).

(3.55)
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Then, introducing the solution of the gap equation (3.38), the energy gap ∆ as a function of the
chemical potential and the binding energy is given by

∆ =
2µ
ε

[1 + (3C − 1 − 8 ln 3 + 13 ln 2)ε] +
εb

ε

[
1 +

(
3C −

1
2
− 8 ln 3 + 13 ln 2 −

1
2

ln
εb

∆

)
ε

]
=

2µ
ε

(1 − 0.345 ε) +
εb

ε

(
1 + 0.155 ε −

ε ln ε
2

)
+
εb

2
ln

(
1 +

2µ
εb

)
, (3.56)

while ε0 is given by
ε0 = 2µ +

εb

2
. (3.57)

Note the difference with the mean field approximation, in which ε0 = µ. When ε0 is positive, the
fermion dispersion curve has its minimum at nonzero value of momentum as in the BCS limit, while
the minimum is located at zero momentum when ε0 is negative as in the BEC limit. We find the former
(ε0 = 2µ > 0) is the case in the unitarity limit. The dispersion curve of the fermion quasiparticleωF(p)
in the unitarity limit εb = 0 is illustrated Fig 3.5. In particular, the difference between the fermion
quasiparticle energy at zero momentum and at its minimum is given by ε 2

0 /2φ0 = εµ ∼ O(ε2).

3.6 Location of the splitting point

Let us consider the situation where the binding energy εb is increasing from zero while the number
density N is kept fixed. Then ∆ > 0 is held fixed but µ is changing. Since to the leading order in ε,
the chemical potential as a function of the energy gap is given by 2µ = ε∆ − εb, the location of the
minimum of the dispersion curve can be written as

ε0 = ε∆ −
εb

2
. (3.58)

Therefore, ε0 decreases as εb increases. When the binding energy reaches εb = 2ε∆, the minimum
of the dispersion curve sits exactly at zero momentum p = 0. This point is referred to as a splitting
point [112]. We find the splitting point is located at the BEC side of the unitarity limit where the
binding energy is positive εb = 2ε∆ > 0 and the chemical potential is negative 2µ = −ε∆. This
splitting point will play an important role to determine the phase structure of the polarized Fermi gas
in the unitary regime as we will study in Chap. 4.

3.7 Momentum distribution function

Other interesting observables which can be measured in experiments are a momentum distribution
function of fermion quasiparticles [113, 114, 115, 116] and a condensate fraction in the fermion
density [6, 7, 116, 117, 118]. The momentum distribution functions, np↑ and np↓, can be computed
from the fermion propagator G(p) through

np↑ =
∫

dp0

2πi
eip00+G11(p0,p) and np↓ = −

∫
dp0

2πi
e−ip00+G22(p0,p), (3.59)
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where the fermion propagator up to the order ε is given by

G(p) = G(p) +G(p)
[
Σ(p) − µσ3

]
G(p) + O(ε2). (3.60)

With the use of the definition of the bare fermion propagator G(p) in Eq. (3.7) and the one-loop
fermion self-energy Σ(p) in Eq. (3.46), the diagonal elements of the fermion propagator becomes

G11(p) = G11(p) +G11(p)
[
Σ11(p) − µ

]
G11(p) +G12(p)

[
Σ22(p) + µ

]
G21(p)

=
p0 + εp

p 2
0 − E 2

p + iδ
+

 p0 + εp

p 2
0 − E 2

p + iδ

2 [
Σ11(p) − µ

]
+

 φ0

p 2
0 − E 2

p + iδ

2 [
Σ22(p) + µ

] (3.61)

andG22(p0,p) = −G11(−p0,p). Since we are considering a symmetric case with µ↑ = µ↓ and m↑ = m↓,
we can confirm the relationship np = np↑ = np↓.

From the first term in Eq. (3.61), the O(1) part of the momentum distribution function n(0)
p is easily

obtained as
n(0)
p =

∫
dp0

2πi
eip00+ p0 + εp

p 2
0 − E 2

p + iδ
=

Ep − εp
2Ep

. (3.62)

The last two terms in Eq. (3.61) contribute to the momentum distribution function to the order of ε.
Since Σ11(p0,p) in Eq. (3.47) is analytic at Im[p0] > 0, the p0 integral of the second term can be
evaluated as∫

dp0

2πi

 p0 + εp

p 2
0 − E 2

p + iδ

2 [
Σ11(p) − µ

]
=

∂

∂p0

( p0 + εp

p0 − Ep

)2 [
Σ11(p) − µ

]
∣∣∣∣∣∣∣
p0=−Ep

= −
φ 2

0

4E 3
p

[
Σ11(−Ep,p) − µ

]
+

(Ep − εp)2

4E 2
p

Σ′11(−Ep,p).

(3.63)

The prime in Σ′11(p0,p) represents the derivative with respect to p0. Similarly, using the relationship
Σ22(p0,p) = −Σ11(−p0,p), the p0 integral of the third term in Eq. (3.61) can be evaluated as∫

dp0

2πi

 φ0

p 2
0 − E 2

p + iδ

2 [
Σ22(p) + µ

]
= −

∫
dp0

2πi

 φ0

p 2
0 − E 2

p + iδ

2 [
Σ11(p) − µ

]
= −

∂

∂p0

( φ0

p0 − Ep

)2 [
Σ11(p) − µ

]
∣∣∣∣∣∣∣
p0=−Ep

= −
φ 2

0

4E 3
p

[
Σ11(−Ep,p) − µ

]
−

φ 2
0

4E 2
p

Σ′11(−Ep,p).

(3.64)

From these two contributions, we obtain the next-to-leading order correction to the momentum dis-
tribution function as

n(1)
p =

φ 2
0

2E 3
p

µ −
φ 2

0

2E 3
p

Σ11(−Ep,p) −
εp(Ep − εp)

2E 2
p

Σ′11(−Ep,p). (3.65)

Substituting the solution of the gap equation in the unitarity limit µ = εφ0/2+O(ε2) and the expression
for Σ11(p) in Eq. (3.47), the O(ε) part of the momentum distribution function n(1)

p is given by

n(1)
p = ε

φ 3
0

4E 3
p

+
g2

4

∫
dk

(2π)4

(Ek − εk)
EpEk(Ep + Ek + εk−p/2)

[
φ 2

0

E 2
p

+
εp(Ep − εp)

Ep(Ek + εk−p/2 + Ep)

]
. (3.66)
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Figure 3.6: Momentum distribution function np of the fermion quasiparticles in the unitarity limit as
a function of the momentum |p|/

√
2mφ0 to the leading and next-to-leading orders in ε. The O(1) part

n(0)
p (red curve), the O(ε) part n(1)

p (green curve), and their sum np = n(0)
p + n(1)

p (blue curve) at ε → 1
are respectively shown.

The momentum distribution function of the fermion quasiparticles np = n(0)
p + n(1)

p to the leading
and next-to-leading orders in ε is plotted as a function of the momentum |p|/

√
2mφ0 in Fig. 3.6. Since

the condensate φ0 is related to the Fermi energy εF = k 2
F /2m by Eq. (3.41),

εF =
φ0

ε2/d

(
1 −

1 − ln 2
4

ε

)
, (3.67)

the Fermi momentum in the horizontal axis of Fig. 3.6 corresponds to

kF√
2mφ0

= ε−1/d
(
1 −

1 − ln 2
8

ε

)
≈ 0.962 (ε → 1). (3.68)

We can find overall agreement of the momentum distribution function computed by the ε expansion
up to the next-to-leading order in ε with that from the Monte Carlo simulation [116].

3.8 Condensate fraction

The fermion density in the condensation N0 is related with the off-diagonal element of the fermion
propagator G12(p) through [116, 117, 118, 119]

N0 = 2
∫

dp

(2π)d

[∫
dp0

2πi
G12(p0,p)

]2

. (3.69)
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Since G12(p) up to the order ε is given from Eq. (3.60) as

G12(p) = G12(p) +G11(p)
[
Σ11(p) − µ

]
G12(p) +G12(p)

[
Σ22(p) + µ

]
G22(p)

= −
φ0

p 2
0 − E 2

p + iδ
−

φ0
(
p0 + εp

)(
p 2

0 − E 2
p + iδ

)2

[
Σ11(p) − µ

]
−

φ0
(
p0 − εp

)(
p 2

0 − E 2
p + iδ

)2

[
Σ22(p) + µ

]
,

(3.70)

the p0 integration of each terms results in

−

∫
dp0

2πi
φ0

p 2
0 − E 2

p + iδ
=

φ0

2Ep
(3.71)

and

−

∫
dp0

2πi
φ0

(
p0 + εp

)(
p 2

0 − E 2
p + iδ

)2

[
Σ11(p) − µ

]
= −

∫
dp0

2πi
φ0

(
p0 − εp

)(
p 2

0 − E 2
p + iδ

)2

[
Σ22(p) + µ

]
= −φ0

∂

∂p0

 p0 + εp(
p0 − Ep

)2

[
Σ11(p) − µ

]
∣∣∣∣∣∣∣
p0=−Ep

(3.72)

= −φ0
εp

4E 3
p

[
Σ11(−Ep,p) − µ

]
+ φ0

Ep − εp

4E 2
p

Σ′11(−Ep,p).

Here we used the relationship Σ22(p0,p) = −Σ11(−p0,p) and the fact that Σ11(p0,p) in Eq. (3.47) is
analytic at Im[p0] > 0.

Therefore, the fermion density in the condensation N0 up to the order ε is given by

N0 = φ
2
0

∫
dp

(2π)d

[
1

2E 2
p

+
εp

E 4
p

µ −
εp

E 4
p

Σ11(−Ep,p) +
Ep − εp

E 3
p

Σ′11(−Ep,p)
]
. (3.73)

The first term provides the leading contribution to N0, while the other three terms are O(ε) corrections.
Substituting the solution of the gap equation in the unitarity limit µ = εφ0/2 + O(ε2) and performing
the integration over p, we obtain N0 as

N0 =

Γ
(
1 − ε

4

)
Γ
(
ε
4

)
4Γ

(
2 − ε

2

) +
π

8
ε + 0.127741 ε + O(ε2)

 (mφ0

2π

) d
2

. (3.74)

Note that because the p integration of the leading term is logarithmically divergent at d = 4, the
leading contribution to N0 becomes O(1/ε) at d = 4 − ε. The fermion density in the condensation
should be compared to the total fermion density N to the same order in ε [102]:

N =

Γ
(

3
2 −

ε
4

)
Γ
(
1 + ε

4

)
2
√
πΓ

(
2 − ε

2

) +
1
2
ε + 0.258352 ε + O(ε2)

 (mφ0

2π

) d
2

. (3.75)

Taking the ratio of N0 to N, we find the condensate fraction N0/N to be
N0

N
= 1 − 0.0966 ε − 0.2423 ε2 + O(ε3). (3.76)

The condensate fraction can take a value from zero (BCS limit) to one (BEC limit). The lowest term
in the ε expansion is one as in the BEC limit and thus all fermion are in the condensation at four
spatial dimensions. Below d = 4, the condensate fraction decreases and the naive extrapolation to
ε = 1 gives N0/N ≈ 0.661.
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ξ = µ/εF ∆/µ N0/N
mean-field approximation 0.5906 1.1622 0.6994 [118]
ε expansion (NLO) 0.475 1.31 0.661
1/N expansion (NLO) [104] 0.279 1.50 —
self-consistent approach [78] 0.360 — —
Monte Carlo simulation 0.42 [86] 1.2 [86] 0.58 [116]

Table 3.2: Comparison of the results by the ε expansion with other analytic and numerical calculations
in the unitarity limit.

3.9 Extrapolation to ε = 1

Finally, we discuss the extrapolation of the series expansion to the physical case at three spatial
dimensions. Although the formalism is based on the smallness of ε, we see that the corrections are
reasonably small even at ε = 1. If we naively use only the leading and next-to-leading order results
for ξ in Eq.(3.43), ∆ in Eq.(3.56), ε0 in Eq.(3.57), and N0/N in Eq. (3.76) in the unitarity limit, their
extrapolations to ε = 1 give for three spatial dimensions

ξ ≈ 0.475,
∆

µ
≈ 1.31,

ε0

µ
≈ 2,

N0

N
≈ 0.661. (3.77)

They are reasonably close to the results of recent Monte Carlo simulations, which yield ξ ≈ 0.42,
∆/µ ≈ 1.2, ε0/µ ≈ 1.9 [86], and N0/N ≈ 0.58 [116]. They are also consistent with recent experimen-
tal measurements of ξ, where ξ = 0.51 ± 0.04 [39] and ξ = 0.46 ± 0.05 [43]. These agreements can
be taken as a strong indication that the ε expansion is useful even at ε = 1. In Table 3.2, we show
results on ξ, ∆/εF, and N0/N from other analytic and numerical calculations. The self-consistent
approach [78] quoted in Table 3.2 and Table 9.1 is based on the Luttinger–Ward and DeDominicis–
Martin formalism [120, 121] where the potential functional is self-consistently approximated by lad-
der diagrams [122, 123]. We can see some improvement of our results compared to naive mean-field
approximations and other analytic approaches.

Our ε expansion predicts the behavior of the thermodynamic quantities near the unitarity limit.
From Eqs. (3.44), (3.45), and (3.42), the extrapolations to the three spatial dimensions ε = 1 lead to

P
εFN

≈
2

d + 2
ξ −

1
8
εb

εF
, (3.78)

E
εFN

≈
d

d + 2
ξ −

1
4
εb

εF

(
5
2
− ln

εb

εF

)
, (3.79)

µ

εF
≈ ξ −

1
4
εb

εF

(
3 − ln

εb

εF

)
. (3.80)

The pressure, energy density, and chemical potential at fixed density are decreasing function of the
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binding energy εb with the slope shown above. In Chap. 7, we will make a discussion to improve the
extrapolation of the series expansion by imposing the exact result at d = 2 as a boundary condition.

We can also try to determine the location of the splitting point. At this point,

εb

εF
=

2
ε2/d−1 [1 + O(ε)]→ 2 at d = 3 (3.81)

and comparing with Eq. (2.14), one finds that at the splitting point akF ≈ 1. Since this result is
known only to leading order in ε, one must be cautious with the numerical value. However, certain
qualitative features are probably correct: the splitting point is located on the BEC side of the unitarity
limit (a > 0) and that the chemical potential µ/εF ≈ −0.5 is negative at this point.



Chapter 4

Phase structure of polarized Fermi gas

4.1 Background and proposed phase diagram

Here we apply the ε expansion developed in the previous Chapter to the unitary Fermi gas with
unequal densities of two components (polarization). We put special emphasis on investigating the
phase structure of the polarized Fermi gas in the unitary regime, which has a direct relation with the
recent measurements in atomic traps [42, 43, 44, 45, 46]. Furthermore, it may be possible in future to
realize the Feshbach resonances between two different species of fermionic atoms to study a Fermi gas
with finite mass difference between different fermion species. Such asymmetric systems of fermions
with density and mass imbalances will be also interesting as a prototype of high density quark matter
in the core of neutron stars, where the density and mass asymmetries exist among different quark
flavors [62, 63, 64, 65, 66]. Extension of the ε expansion to the polarized Fermi gas with unequal
masses will be studied in the next Chapter and we concentrate on the equal mass case here.

Reliable facts on the phase structure of the polarized Fermi gas is known only in the weak-coupling
BCS and BEC limits. If the polarization chemical potential H = (µ↑ − µ↓)/2 is sufficiently small, the
ground state is the unpolarized superfluid state both in the BCS and BEC limits and these two limits
are considered to be smoothly connected as a function of 1/akF (phase I in Fig. 4.1). When H is
increased, we will have different situations in the two limits. In the BCS limit, the BCS superfluid
state becomes unstable toward to the Fulde-Ferrell-Larkin-Ovchinikov (FFLO) states where Cooper
pairs form with a nonzero momentum and the superfluid order parameter varies in space [124, 125]
(phase IV). For the sufficiently large H, the Cooper paring is unfavorable and the system goes to a
polarized normal Fermi gas (phase II). On the other hand, when H is increased in the BEC limit,
unbound fermions are created on the top of the molecular BEC ground state. The system becomes
a homogeneous mixture of the polarized fermions with the condensed molecules (phase III). For the
sufficiently large H, all bound molecules disappear and the ground state is a fully polarized normal
Fermi gas (phase II). Since the FFLO phase where the rotational symmetry is spontaneously broken
does not appear in the BEC limit, such a phase should terminates somewhere between the BCS and
BEC limits.

From these knowledge in the two limits and assuming there is a phase transition line between
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Figure 4.1: Proposed phase diagram in the plane of the diluteness parameter κ = −1/akF and the po-
larization chemical potential η = H/∆H=0 by Son and Stephanov [112]. I is the unpolarized BEC/BCS
phase, II is the normal phase, III is the gapless superfluid phase, and IV is a region of Fulde-Ferrell-
Larkin-Ovchinikov phases [124, 125]. The dashed line divides phases II and III into regions with
one (on the left) and two (on the right) Fermi surfaces. Region IV must be divided into phases with
different patterns of breaking of the rotational symmetry (not shown).

the phases III and IV instead of I and II, Son and Stephanov proposed a global phase diagram of the
polarized Fermi gas in the BCS-BEC crossover as shown in Fig. 4.1 [112]. The point S where the
FFLO phase terminates is called the splitting point and the phase structure around it is studied based
on the effective field theory [112]. The purpose of this Chapter is to study the phase structure of the
polarized Fermi gas in the unitary regime including the splitting point from the microscopic point of
view using the ε expansion.

4.2 Effective potential at finite superfluid velocity

In order to take into account the possibility of the FFLO state in the phase diagram, we generalize
our formalism to allow a spatially varying condensate where 〈φ(x)〉 = e2imvs·xφ0 with vs being the
superfluid velocity. The factor e2imvs·x in front of φ0 in the Lagrangian density can be absorbed by
making the Galilean transformation on the fermion field as ψσ(x) → eimvs·xψσ(x) and the boson field
as ϕ(x)→ e2imvs·xϕ(x). Accordingly, the fermion propagator in Eq. (3.7) is modified as

G(p0,p) =
1

(p0 + H − p · vs)2 − (εp + εmvs)2 − φ 2
0 + iδ

×

p0 + H + εp−mvs −φ0

−φ0 p0 + H − εp+mvs

 , (4.1)
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while the boson propagator in Eq. (3.8) as

D(p0,p) =
(
p0 −

εp+2mvs

2
+ iδ

)−1
. (4.2)

The value of the superfluid velocity vs is determined from minimizing the vs dependent part of the
effective potential VH(vs). As far as the polarization H is sufficiently small compared to the energy
gap ∆ of the fermion quasiparticle, VH(vs) to the leading order in ε is given by the fermion one-loop
diagram with the propagator in Eq.(4.1):

VH<∆(vs) = −
∫

dp

(2π)d

√(
εp + εmvs

)2
+ φ 2

0 . (4.3)

Since it will turn out that εmvs is O(ε11), we can expand the integrand in terms of εmvs/φ0 to lead to

VH<∆(vs) = −
∫

dp

(2π)d

εb

Ep
εmvs '

εmvs

ε

(mφ0

2π

)2

. (4.4)

Using the definition of the fermion number density N in Eq. (3.40), this part can be rewritten as
VH<∆(vs) = Nεmvs , which represents the energy cost due to the presence of the superfluid flow.

If H − p · vs reaches the bottom of the fermion quasiparticle spectrum ∆ + (εp + εmvs − ε0)2/2φ0,
VH(vs) receives an additional contribution from the filled fermion quasiparticles. Since εmvs ∼ ε11

is small, we can neglect it in the quasiparticle energy. Then the vs dependent part of the effective
potential is given by

VH(vs) = Nεmvs −

∫
dp

(2π)d
(H − p · vs − ωF(p))> , (4.5)

where we have introduced a notation (x)y
> = xy θ(x) and ωF(p) is the fermion quasiparticle spectrum

ωF(p) = ∆ + (εp − ε0)2/2φ0 derived in Eq. (3.53). The effective potential VH(vs) to the leading order
in ε has the same form as that studied based on the effective field theory in [112].

4.3 Critical polarizations

Now we evaluate the effective potential VH(vs) at d = 4 as a function of vs and H. Changing the
integration variables to z = εp/φ0 and w = p̂ · v̂s, we have

VH(vs) =
(mφ0

2π

)2

(4.6)

×

[
εmvs

ε
−

2
π

∫ ∞

0
dz

∫ 1

−1
dw z
√

1 − w2

(
H − ∆ −

(z − z0)2

2
φ0 − 2

√
zφ0εmvsw

)
>

]
,

where z0 = ε0/φ0 ∼ ε. We can approximate
√

zφ0εmvs by
√

z0φ0εmvs because the difference will be
O(ε8) and negligible compared to itself

√
z0φ0εmvs ∼ ε

6. Then the integration over z leads to

VH(vs) =
(mφ0

2π

)2

φ0

εmvs

εφ0
−

32
3π

z0

(
εmvs

φ0
z0

)3/4 ∫ 1

−1
dw
√

1 − w2
( H − ∆

2
√
εmvsφ0z0

− w
)3/2

>

 . (4.7)
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By introducing the dimensionless variables x and h as

εmvs

φ0
= x2

(
32
3π
ε

)4

z 7
0 and

H − ∆
φ0

= 2h
(
32
3π
ε

)2

z 4
0 , (4.8)

we can rewrite the effective potential VH(vs) = Vh(x) in the simple form as

Vh(x) = φ0

(mφ0

2π

)2 (
32
3π

)4

ε3z 7
0

x2 − x3/2
∫ 1

−1
dw
√

1 − w2

(
h
x
− w

)3/2

>

 . (4.9)

Now we see that if the superfluid velocity exists, εmvs ∼ ε
11 and the vs dependent part of the effective

potential is O(ε10).
Numerical studies on the effective potential Vh(x) as a function of x show that there exists a region

of h, h1 < h < h2, where Vh(x) has its minimum at finite x. These two critical values are numerically
given by

h1 = −0.00366 and h2 = 0.0275. (4.10)

Correspondingly, we obtain the critical polarizations normalized by the energy gap as

H1

∆
= 1 − 0.0843 ε2

(
ε0

∆

)4
, (4.11)

and

H2

∆
= 1 + 0.634 ε2

(
ε0

∆

)4
. (4.12)

Here we have replaced φ0 by ∆ because they only differ by O(ε) [Eq. (3.54)]. The region for the phase
with spatially varying condensate is H2 − H1 ∼ ε6, where the superfluid velocity vs is finite at the
ground state.

As the polarization increases further H > H2, the superfluid velocity disappears. If H < ωF(0),
fermion quasiparticles which have momentum ωF(p) < H are filled and hence there exist two Fermi
surfaces, while there is only one Fermi surface for H > ωF(0) [see Fig. 3.5]. Therefore, from the
quasiparticle spectrum derived in Eq. (3.53), the polarization for the disappearance of the inner Fermi
surface H3 is given by

H3

∆
=
ωF(0)
∆
= 1 +

1
2

(
ε0

∆

)2
. (4.13)

Here the location of minimum in the fermion quasiparticle spectrum ε0 is related with the binding
energy εb near the unitarity limit via ε0 = ε∆ − εb/2 [Eq. (3.58)]. The critical polarizations H1/∆ and
H2/∆ as functions of εb/ε∆ are illustrated in Fig. 4.2.

4.4 Phase transition to normal Fermi gas

Next we turn to the phase transition to the normal Fermi gas which occurs at H − ∆ ∼ ε. Since the
region for the phase with spatially varying condensate is H1,2 − ∆ ∼ ε

6, we can neglect the superfluid
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velocity vs here. We can also neglect the possibility to have two Fermi surfaces where H3 − ∆ ∼ ε
2.

Then the contribution of the polarized quasiparticles to the effective potential is evaluated as

VH(0) = −
∫

dp

(2π)d
(H − ωF(p))>

' −
(H − ∆)2

>

2φ0

(mφ0

2π

)d/2

,

(4.14)

where we have neglected the higher order corrections due to the shift of the location of minimum in
the dispersion relation ε0 ∼ ε. According to the modification of the effective potential in Eq. (3.36) to
Veff(φ0) + VH, the solution of the gap equation in Eq. (3.38) becomes φ0 → φ0 + φH, where

φH = −(H − ∆)> +
(H − ∆)2

>

2φ0
. (4.15)

Then the pressure of polarized Fermi gas in the superfluid state is given by P = −Veff(φ0 + φH) − VH,
which results in

P =
φ0

6

[
1 +

(
17
12
− 3C −

γ + ln 2
2

)
ε −

3εb

4φ0

] (mφ0

2π

)d/2

+ O
(
ε(H − ∆)2

>, (H − ∆)3
>

)
. (4.16)

The polarization dependent part of the pressure PH ∼ ε
3 is small and negligible in the region consid-

ered here H − ∆ ∼ ε.
The pressure of the superfluid state should be compared to that of the normal state with the same

chemical potentials. Since the phase transition to the normal state happens at H ∼ φ0 � µ ∼ εφ0,
only one-component of fermions exists in the normal state. Therefore, the interaction is completely
suppressed in the normal Fermi gas and its pressure Pn is simply given by that of a free Fermi gas
with a single component:

Pn =

∫
dp

(2π)d (µ↑ − εp)> =
(H + µ)

d
2+1

Γ
(

d
2 + 2

) ( m
2π

) d
2
. (4.17)

The phase transition of the superfluid state to the normal state occurs at H = Hc where the two
pressures coincide P = Pn. From Eqs. (4.16) and (4.17), the critical polarization Hc satisfies the
following equation,

Hc =

[
1 +

εb

4φ0
−Cε −

2 + ln 2
6

ε

]
φ0

=

[
1 +

εb

4∆
−Cε −

2 + ln 2
6

ε + (8 ln 3 − 12 ln 2)ε
]
∆,

(4.18)

where we have substituted the relation between the condensate φ0 and the energy gap ∆ at zero polar-
ization in Eq. (3.54). Defining a number σ ∼ O(1) by

σ = C +
2 + ln 2

6
− (8 ln 3 − 12 ln 2) ≈ 0.12197. (4.19)



34 Chapter 4. Phase structure of polarized Fermi gas

the critical polarization normalized by the energy gap at zero polarization is written as

Hc

∆
= 1 − εσ +

εb

4∆
+ O(ε2). (4.20)

If the binding energy is large enough εb/ε∆ > 4σ = 0.488, the superfluid state remains above H = ∆.
The superfluid state at ∆ < H < Hc is referred to as a gapless superfluid state. The fermion number
densities of two difference components are asymmetric there and the fermionic excitation does not
have the energy gap.

In particular, at the unitarity limit where εb/∆ = 0, the critical polarization is given by

Hc

∆

∣∣∣∣∣
UL
= 1 − εσ = 1 − 0.122 ε, (4.21)

At the splitting point where εb/∆ = 2ε, it is

Hc

∆

∣∣∣∣∣
SP
= 1 − εσ +

ε

2
= 1 + 0.378 ε. (4.22)

The extrapolations to three spatial dimensions ε = 1 give the critical polarizations at the two typical
points as Hc/∆ |UL = 0.878 and Hc/∆ |SP = 1.378. At unitarity, hence, there is no gapless superfluid
phase. On the other hand, near the splitting point the normal phase is not competitive compared to the
gapless phases. The phase boundary between the superfluid and normal phases Hc/∆ as a function of
εb/ε∆ is illustrated in Fig. 4.2.

4.5 Phase structure near the unitarity limit

The schematic phase diagram of the polarized Fermi gas in the unitary regime is shown in Fig. 4.2
in the plane of H and εb/ε for the fixed energy gap ∆ at zero polarization. The critical polarization
Hc/∆ divides the phase diagram into two regions; the superfluid phase at H < Hc (I and III) and the
normal phase at H > Hc (II). The Fermi gas in the normal phase is fully polarized near the unitarity
limit because H � µ. The phase transition of the superfluid state to the normal state is of the first
order, because of the discontinuity in the fermion number density which is O(ε−1) in the superfluid
phase while O(1) in the normal phase.

The superfluid phase can be divided further into two regions; the gapped superfluid phase at H < ∆

(I) and the gapless superfluid phase at ∆ < H < Hc (III). At the BEC side of the splitting point (SP)
where εb/ε∆ > 2, the phase transition from the gapped phase to the gapless phase is of the second
order because a discontinuity appears in the second derivative of the pressure ∂2P/∂H2 ∼ ε θ(H − ∆)
[see Eq. (4.16)]. On the other hand, at the BCS side of the splitting point where

4σ <
εb

ε∆
< 2, (4.23)

there exists the superfluid phase with spatially varying condensate (IV) at H1 < H < H2 between the
gapped and gapless phases. This phase appears only in the narrow region where H2 − H1 ∼ ε

6. The
phase transitions at H = H1, H2 are of the first order.
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Figure 4.2: Schematic phase diagram of the polarized Fermi gas near the unitarity limit from the ε
expansion. The phase diagram can be divided into four phases, I: the gapped superfluid phase, II:
the polarized normal phase, III: the gapless superfluid phase, and IV: the phase with spatially varying
condensate. The inset is the magnification of the region around the splitting point (SP). The phase IV
appears in the narrow region represented by the thick line between the phases I and III.

In actual experiments using fermionic atoms, unitary Fermi gases are trapped in the optical po-
tential V(r) [42, 43, 44, 45, 46]. In such cases, the polarization H and the scattering length or εb are
constant, while the effective chemical potential µ − V(r) decrease from the center to the peripheral
of the trapping potential. For the purpose of comparison of our results with the experiments on the
polarized Fermi gases, it is convenient to visualize the phase diagram in the plane of H and µ for the
fixed εb.

In Fig. 4.3, εHc/εb and ε∆/εb are plotted as functions of µ/εb for the fixed binding energy εb > 0.
The superfluid phase and the normal phase are separated by the line of the critical polarization H = Hc,
while the gapped and gapless superfluid phases are separated by the line of the energy gap at zero
polarization H = ∆. The intersection of two lines, Hc = ∆, is located at (µ/εb, εH/εb) = ((1 −
4σ)/8σ, 1/4σ) = (0.524, 2.05), while the splitting point in the phase diagram is at (µ/εb, εH/εb) =
(−1/4, 1/2). The horizontal dashed line from right to left tracks the chemical potential µ in the trapped
Fermi gas from the center to the peripheral. If the polarization is small enough compared to the
binding energy εH/εb < 2.05, there exists the gapless superfluid phase (III) between the gapped
superfluid phase (I) and the normal phase (II). When the polarization is above the splitting point
0.5 < εH/εb < 2.05, the phase with spatially varying condensate (thick line between I and III) will
appear between the gapped and gapless superfluid phases.

Assuming that the picture remains qualitatively valid in three dimensions, we thus found that the
physics around the splitting point is the same as argued in Ref. [112]. However, due to the competition
with the normal phase, the gapless phases disappear at some point, probably before the unitarity is
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Figure 4.3: Schematic phase diagram of the polarized Fermi gas near the unitarity limit in the H-µ
plane for the fixed binding energy εb > 0. The phases I, II, and III are same as in Fig. 4.2. The
horizontal dashed line from right to left tracks the chemical potentials (µ,H) in trapped Fermi gases
from the center to the peripheral.

reached. The point where this happens can be estimated from our calculations to be

(akF)−1 =
√

2σ = 0.494. (4.24)

The gapless phase with spatially varying condensate exists in a finite range 0.494 < (akF)−1 < 1. Thus
the ε expansion does not support the hypothesis of Ref. [112] that the region of the gapless state with
spatially varying condensate is connected with the FFLO region on the BCS side (see Fig. 4.1).



Chapter 5

Fermions with unequal masses

5.1 Two-body scattering in vacuum

Now we generalize our discussion on the unitary Fermi gas in the ε expansion to the fermions with
unequal masses m↑ , m↓, especially to study the phase structure of unitary Fermi gas with unequal
densities and masses. As we mentioned in the previous Chapter, such asymmetric systems of fermions
with density and mass imbalances will be interesting as a prototype of high density quark matter in the
core of neutron stars, where the density and mass asymmetries exist among different quark flavors [62,
63, 64, 65, 66]. So far the phase structure of the two-component Fermi gas with density and mass
imbalances in the BCS-BEC crossover has been studied within the mean-field approximation [126,
127, 128, 129], which is not a controllable approximation in the strong-coupling unitary regime.

First we reconsider the two-fermion scattering in vacuum studied in Chap. 2. As a result of
the summation of the geometric series of bubble diagrams, the inverse T -matrix of the two-body
scattering is given by

T (p0,p)−1 =
1
c0
+

∫
dk

(2π)d

1

p0 −
(p2 +k)

2

2m↑
−

(p2 −k)
2

2m↓
+ iδ

. (5.1)

The limit of infinite scattering length corresponds to 1/c0 → 0 as before. Introducing the total mass
M = m↑ + m↓ and the reduced mass mr = m↑m↓/(m↑ + m↓), the inverse T -matrix at d = 4 − ε spatial
dimensions to the leading order in ε can be written as

T (p0,p)−1 =
1
c0
−

2
ε

(mr

2π

)2
(
p0 −

p2

2M
+ iδ

)
+ · · · . (5.2)

This result suggests that the boson propagator is given by

D(p0,p) =
(
p0 −

p2

2M
+ iδ

)−1

(5.3)

with the fermion-boson effective coupling

g2 '
2π2ε

m 2
r
. (5.4)

37
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The binding energy εb > 0 is obtained as the location of the pole of the T -matrix at zero external
momentum: T (−εb,0)−1 = 0. From Eq. (5.1), we see c0 is related with εb via the following equation

1
c0
= Γ

(
1 −

d
2

) (mr

2π

) d
2
ε

d
2−1

b . (5.5)

Near the four spatial dimensions, the relationships between εb and c0 to the next-to-leading order in
ε = 4 − d is given by

1
c0
' −

εb

2ε

(mr

π

)2 [
1 +

ε

2
(1 − γ)

] (mrεb

2π

)− ε2
. (5.6)

5.2 ε expansion with unequal masses

Now we consider the finite density system. The formalism of the ε expansion developed in the equal
mass case in Chap. 3 holds just by replacing the boson propagator D(p) by Eq. (5.3) and the fermion-
boson effective coupling g by

g =
(2π2ε)1/2

mr

(mrφ0

π

)ε/4
. (5.7)

Then the Lagrangian density under consideration is given by

L0 = Ψ
†

(
i∂t + H +

σ3 + κ

4mr
∇2 + σ+φ0 + σ−φ0

)
Ψ + ϕ∗

(
i∂t +

∇2

2M

)
ϕ −

φ 2
0

c0
, (5.8)

L1 = gΨ†σ+Ψϕ + gΨ†σ−Ψϕ∗ + µΨ†σ3Ψ +

(
2µ −

g2

c0

)
ϕ∗ϕ −

gφ0

c0
ϕ −

gφ0

c0
ϕ∗ , (5.9)

L2 = −ϕ
∗

(
i∂t +

∇2

2M

)
ϕ − 2µϕ∗ϕ . (5.10)

where µσ = µ ± H and 1/2mσ = (1 ± κ)/4mr. We introduced the dimensionless parameter −1 < κ < 1
defined by

κ ≡ −
m↑ − m↓
m↑ + m↓

, (5.11)

which measures the mass difference between two fermions.
The Lagrangian density L0 generates the fermion propagator given by

G(p0,p) =
1

(p0 + H − κεp)2 − E 2
p + iδ

p0 + H − κεp + εp −φ0

−φ0 p0 + H − κεp − εp

 , (5.12)

where εp = p2/4mr and Ep =
√
ε 2
p + φ

2
0 , and the boson propagator given by

D(p0,p) =
(
p0 −

p2

2M
+ iδ

)−1

=

(
p0 −

1 − κ2

2
εp + iδ

)−1

. (5.13)

We can use the same Feynman rule and the same power counting rule of ε as the equal mass case
developed in Sec. 3.2, as far as the mass difference is not so large. When the mass difference is



5.3. Effective potential and pressure 39

as large as |κ| ' 1 − O(1/ε), the power counting rule of ε breaks down because of the existence
of another large parameter mheavy/mlight ∼ 1/ε. Accordingly, the fermion-boson scattering leads to
the three-body bound states (Efimov states) in vacuum when the mass ratio is given by mheavy/mlight =

4/ε+O(1) [134, 135, 136]. In this Chapter, we will only consider the case where the mass difference is
at most κ ∼ O(1) and free from the Efimov states. First we will determine the pressure and the fermion
quasiparticle spectrum to the leading and next-to-leading orders in ε at the unpolarized ground state
where H = 0. Then we investigate the phase structure of polarized Fermi gas with the small mass
difference κ ∼ ε.

5.3 Effective potential and pressure

The computation of the effective potential with finite κ is straightforward according to the systematic
expansion over ε. Since κεp < Ep for any momentum p, κ does not appear at the one-loop level.
Therefore, the effective potential from the tree and one-loop diagrams depends only on the reduced
mass mr as

V0(φ0) + V1(φ0)

=
φ 2

0

c0
−

∫
dp

(2π)d

(
Ep + µ

εp

Ep

)
(5.14)

=
φ 2

0

c0
+

[
φ0

3

{
1 +

7 − 3(γ + ln 2)
6

ε

}
−
µ

ε

{
1 +

1 − 2(γ − ln 2)
4

ε

}] (mrφ0

π

)d/2

.

The effective potential at two-loop level is given by the same diagram in Fig. 3.3 as

V2(φ0) = g2
∫

dp dq
(2π)2d+2 G11(p)G22(q)D(p − q)

= −
g2

4

∫
dp dq

(2π)2d

(Ep − εp)(Eq − εq)

EpEq
[
Ep + Eq + 1−κ2

2 εp−q − κεp + κεq
] . (5.15)

Changing the integration variables to x = εp/φ0, y = εq/φ0, and cos θ = p̂ · q̂, the integral can be
expressed by

V2(φ0) = −ε
(mrφ0

π

)2 φ0

π

∫ ∞

0
dx

∫ ∞

0
dy

∫ π

0
dθ xy sin2 θ

[ f (x) − x][ f (y) − y]

f (x) f (y)
[
gκ(x, y) − (1 − κ2)

√
xy cos θ

]
(5.16)

with f (x) =
√

x2 + 1 and gκ(x, y) = f (x) + f (y) + 1−κ2

2 (x + y) − κ(x − y). The integration over θ can be
performed analytically to lead to

V2(φ0) = −Cκε
(mrφ0

π

)2

φ0 (5.17)

where Cκ is a function of κ given by a two-dimensional integral

Cκ =

∫ ∞

0
dx

∫ ∞

0
dy

[ f (x) − x][ f (y) − y]
f (x) f (y)

gκ(x, y) −
√

gκ(x, y)2 − (1 − κ2)2xy
(1 − κ2)2 . (5.18)
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Cκ is symmetric under κ → −κ and numerically we find Cκ is an increasing function of κ at 0 ≤ κ < 1.
In the equal mass limit κ = 0, we reproduce C0 ≈ 0.14424 in Eq. (3.35).

Consequently, we obtain the effective potential Veff = V0 +V1 +V2 up to the next-to-leading order
in ε,

Veff(φ0) =
φ 2

0

c0
+

[
φ0

3

{
1 +

7 − 3(γ + ln 2)
6

ε − 3Cκε

}
−
µ

ε

{
1 +

1 − 2(γ − ln 2)
4

ε

}] (mrφ0

π

)d/2

. (5.19)

Comparing Veff(φ0) with the effective potential in the equal mass case in Eq. (3.36), we see the solution
of the gap equation φ0 is simply given by replacing the fermion mass m by 2mr and the constant C by
Cκ. Using the relation of c0 with the binding energy of boson εb in Eq. (5.5), we obtain the condensate
as

φ0 =
2µ
ε

[1 + (3Cκ − 1 + ln 2) ε] +
εb

ε

[
1 +

(
3Cκ −

1
2
+ ln 2 −

1
2

ln
εb

φ0

)
ε

]
. (5.20)

Then the pressure up to the next-to-leading order in ε is given by

P = −Veff(φ0) =
φ0

6

[
1 +

(
17
12
− 3Cκ −

γ + ln 2
2

)
ε −

3εb

4φ0

] (mrφ0

π

)d/2

. (5.21)

When the mass difference κ is as small as ε which is the case we will concentrate on later, we can
neglect the κ dependence in Cκ to give C ≈ 0.14424. In this case, the pressure of the superfluid state
up to the order O(ε) depends only on mr and not on κ at all.

5.4 Self-energy and dispersion relation

Let us turn to the computation of the fermion quasiparticle spectrum with finite κ. To the leading
order in ε, the dispersion relation of fermion quasiparticles are given by

ωF(p) = Ep ± κεp. (5.22)

The lighter fermion has the energy gap ∆ = φ0 at εp = 0, while the heavier fermion has the energy
gap ∆ =

√
1 − κ2 φ0 at εp = |κ| φ0/

√
1 − κ2. The next-to-leading order corrections to the dispersion

relation come from the µ insertion to the fermion propagator and the one-loop self-energy diagrams,
−iΣ(p), depicted in Fig. 3.4. The one-loop diagrams in Fig. 3.4 give corrections to the diagonal
elements of the fermion self-energy, which is evaluated as

Σ11(p) = ig2
∫

dk
(2π)d+1 G22(k)D(p − k)

= −
g2

2

∫
dk

(2π)d

Ek − εk
Ek

[
Ek + κεk + 1−κ2

2 εk−p − p0

] , (5.23)

and

Σ22(p) = ig2
∫

dk
(2π)d+1 G11(k)D(k − p)

=
g2

2

∫
dk

(2π)d

Ek − εk
Ek

[
Ek − κεk + 1−κ2

2 εk−p + p0

] . (5.24)
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From now on, we concentrate on the case where the mass difference is as small as κ ∼ ε, where
we will see interesting physics in the phase diagram. In this case, we can neglect the κ dependence
in Σ11 and Σ22 to the order O(ε) because Σ is already small by the factor g2 ∼ ε. Therefore, the mod-
ification of the fermion quasiparticle spectrum due to the finite κ comes from Eq. (5.22). Following
the calculations in Sec. 3.5, we find that the dispersion relation of the fermion quasiparticle around its
minimum has the following form

ωF(p) ' ∆ +
(εp ± κφ0 − ε0)2

2φ0
'

√
(εp ± κφ0 − ε0)2 + ∆2. (5.25)

Here ∆ is the energy gap of the fermion quasiparticle defined in Eq. (3.54) and ε0 is given by
Eq. (3.55). Note that the energy gap is not affected by κ up to the order O(ε). The minimum of
the dispersion curve is located at a nonzero value of momentum |p| satisfying εp = ε0 − |κ|φ0 for the
lighter fermion and εp = ε0 + |κ|φ0 for the heavier fermion when those are positive.

5.5 Critical polarizations and phase diagram

Since the result should be symmetric under H → −H and κ → −κ, we can choose H > 0 without
losing generality. Accordingly, κ > 0 (< 0) corresponds to the system where the majority is the
lighter (heavier) fermions and an increase of κ means a decrease of major fermion’s mass. When H is
increased, the phase transition to the normal Fermi gas occurs at H − ∆ ∼ ε. The critical polarization
Hc is given where the pressure of the superfluid state coincides with that of the normal state with
the same chemical potentials. The pressure of the superfluid state is given by Eq. (5.21) because the
contribution of the polarized quasiparticles to the pressure is O(ε3) and negligible [see Eq. (4.16)].
On the other hand, since H ∼ φ0 � µ ∼ εφ0, the pressure of the normal state is given by that of the
fully polarized free Fermi gas

Pn =

∫
dp

(2π)d

(
µ↑ −

p2

2m↑

)
>

=
(H + µ)

d
2+1

Γ
(

d
2 + 2

) (
mr/π

1 + κ

) d
2

. (5.26)

The condition P = Pn for the phase transition to the normal state gives the critical polarization H = Hc

normalized by the energy gap at zero polarization ∆ in Eq. (3.54) as

Hc

∆
= 1 − εσ +

εb

4∆
+

2
3
κ + O(ε2). (5.27)

The number σ ≈ 0.12197 is defined in Eq. (4.19). When Hc > ∆, the gapless superfluid state appears
at ∆ < H < Hc. In particular, in the unitarity limit εb = 0, the gapless superfluid state is possible when
the majority is the lighter fermions and the mass difference is as large as κ/ε > 3σ/2 = 0.183. The
phase boundary between the superfluid and normal phases Hc/∆ in the unitarity limit as a function of
κ/ε is illustrated in Fig. 5.1.

The minimum of the dispersion curve for the major fermions is located at a nonzero value of
momentum |p| satisfying

ε0 − κφ0 = (ε − κ)∆ −
εb

2
+ O(ε2). (5.28)
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Figure 5.1: Schematic phase diagram of the polarized Fermi gas with unequal masses in the unitarity
limit from the ε expansion. κ > 0 (< 0) corresponds to the system where the majority is the lighter
(heavier) fermions and an increase of κ means a decrease of major fermion’s mass. The phase diagram
can be divided into four phases, I: the gapped superfluid phase, II: the polarized normal phase, III:
the gapless superfluid phase, and IV: the phase with spatially varying condensate. The inset is the
magnification of the region around the splitting point (SP). The phase IV appears in the narrow region
represented by the thick line between the phases I and III.

Therefore, we find the splitting point where the minimum of the dispersion curve sits exactly at zero
momentum exists at

εb

2∆
+ κ = ε. (5.29)

The phase structure around the splitting point is determined by the same discussion given in Chap. 4
just by replacing ε0 by ε0 − κφ0. There exists the phase with spatially varying condensate (or finite
superfluid velocity) at H1 < H < H2, where

H1

∆
= 1 − 0.0843 ε2

(
ε0

∆
− κ

)4
, (5.30)

and

H2

∆
= 1 + 0.634 ε2

(
ε0

∆
− κ

)4
. (5.31)

Furthermore, the polarization for the disappearance of the inner Fermi surface H3 is given by

H3

∆
=
ωF(0)
∆
= 1 +

1
2

(
ε0

∆
− κ

)2
. (5.32)

If ∆ < H < H3, fermion quasiparticles which have momentum ωF(p) < H are filled and hence there
exist two Fermi surfaces, while there is only one Fermi surface for H3 < H. Since ε0−κφ0 = (ε − κ)∆
in the unitarity limit εb = 0, the splitting point is located at κ = ε. The critical polarization for the
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Figure 5.2: Phase diagram of the polarized Fermi gas in the plane of binding energy εb and mass
difference κ from the ε expansion. Two solid lines show Hc = ∆ in Eq. (5.34) and the location of
the splitting point (SP) in Eq. (5.29). The intersection of these two lines is given by Eq. (5.35). The
phases II, III, and IV represents the ground state slightly above H = ∆. The phase diagrams in the
equal mass limit κ = 0 and in the unitarity limit εb = 0 with H-axis are already illustrated in Fig. 4.2
and Fig. 5.1, respectively.

phase transition to the normal state at this point is Hc/∆ = 1 + 0.545ε > 0. Therefore, the phase with
spatially varying condensate and the phase with two Fermi surfaces are stably exist in the unitarity
limit with finite mass difference given by

3
2
σ <

κ

ε
< 1. (5.33)

The critical polarizations H1/∆ and H2/∆ in the unitarity limit as functions of κ/ε are illustrated in
Fig. 5.1.

Finally, we discuss the whole phase structure of the polarized Fermi gas with unequal masses near
the unitarity limit. Hc(εb, κ) in Eq. (5.27) is a function of the binding energy εb and the mass difference
κ. Hence H = Hc forms a single plane in the three-dimensional phase diagram in the space of εb/∆, κ,
and H/∆, which separates the superfluid phase at H < Hc from the polarized normal phase at H > Hc.
The splitting point given by Eq. (5.29) with H = ∆ forms a “line” in such a three-dimensional phase
diagram. The superfluid phase with spatially varying condensate emerges from the SP line, which
occupies a finite region in the phase diagram between the gapped superfluid phase at H < H1 and the
gapless superfluid phase at H2 < H < Hc.

Fig. 5.2 shows a part of such a three-dimensional phase diagram in the space of εb/∆, κ, and H/∆,
sliced slightly above H = ∆. When Hc < ∆ for a given set of εb and κ (lower half of the Hc = ∆ line
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Figure 5.3: Schematic phase diagram of the polarized Fermi gas in the H-εb plane near the disappear-
ance of the splitting point at κ = −2.0 ε and −2.5 ε. The phases I, II, III, and VI are same as in Fig. 5.1.
If κ > −2.27 ε (left panel), the splitting point and the phase with spatially varying condensate stably
exist, while those become unstable when κ < −2.27 ε (right panel).

in Fig. 5.2), the superfluid state is unstable at H = ∆ and there exists the phase transition from the
gapped superfluid state to the polarized normal state (II). On the other hand, when Hc > ∆ (upper half
of the Hc = ∆ line in Fig. 5.2), the superfluid is stable even at H > ∆ and the gapless superfluid state
(III) appears there. The boundary Hc = ∆ dividing the phase diagram in the plane of εb and κ into
these two regions is given from Eq. (5.27) by

εb

4∆
+

2
3
κ = εσ (5.34)

As the mass of major fermions is increased (or κ is decreased), the boundary shifts to the larger value
of εb because the pressure of the normal state increases. Consequently, the polarized normal state
occupies the wider domain near the unitarity limit.

The region where Hc > ∆ can be further divided into two regions according to whether the min-
imum of the dispersion curve is located at a nonzero value of momentum ε0 − κφ0 > 0 or not. If
ε0 − κφ0 > 0 (below the SP line in Fig. 5.2), there exist the superfluid state with spatially varying
condensate (IV) between the normal state and the gapless superfluid state. The boundary ε0 = κφ0

represents the line of the splitting point given by Eq. (5.29). As the mass of major fermions is in-
creased, the region for the superfluid phase with spatially varying condensate shrinks. Eventually,
such a phase disappears at the following point where the two lines Hc = ∆ and ε0 = κφ0 merges

εb

∆
= 4 (2 − 3σ) ε = 6.54 ε,

κ = −3 (1 − 2σ) ε = −2.27 ε.
(5.35)
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Therefore, if the mass difference is as large as κ < −2.27 ε with major heavier fermions, the splitting
point becomes unstable towards the polarized normal state and the superfluid phase with spatially
varying condensate never appears for any value of the binding energy εb. The schematic phase dia-
gram in the plane of εb and H near the disappearance of the splitting point is illustrated in Fig. 5.3 by
taking the typical values at κ = −2.0 ε and −2.5 ε.

5.6 Summary on the phase structure of polarized Fermi gas

In Chapters 4 and 5, the phase structure of the polarized Fermi gas with equal and unequal fermion
masses has been studied in the unitary regime based on the ε expansion around four spatial dimen-
sions. Although our results are valid only near four spatial dimensions where ε � 1, we can draw
the following conclusions assuming that the picture remains qualitatively valid in three dimensions.
At unitarity in the equal mass limit, there is a first-order phase transition from the unpolarized su-
perfluid state to the fully polarized normal state. On the BEC side of the unitarity point, the gapless
superfluid phase and the superfluid phase with spatially varying condensate stably exist between the
gapped superfluid phase and the polarized normal phase in a certain range of the binding energy and
the mass difference. In the equal mass limit (Fig. 4.2), our study gives a microscopic foundation to the
phase structure around the splitting point, which has been proposed on the BEC side of the unitarity
point using the effective field theory [112]. Moreover, we found the gapless phases terminate at some
point before the unitarity is reached due to the competition with the polarized normal state. The naive
extrapolation of our result (4.23) with the use of Eq. (2.14) estimates the range of the superfluid phase
with spatially varying condensate to be 0.494 . (akF)−1 . 1 at three dimensions ε → 1.

We also found the splitting point and the same phase structure around it in the unitarity limit but
with finite mass difference between two fermion species when the majority is the lighter fermions
(κ > 0 in Fig. 5.1). The range of the superfluid phase with spatially varying condensate can be
estimated from Eq. (5.33) to be 1.37 . mminority/mmajority . 3 at ε → 1. Such splitting points form a
smooth line on the H = ∆ plane of the three-dimensional phase diagram in the space of εb/∆, κ, and
H/∆. It gets away from the unitarity with increasing the mass of major fermions (or decreasing κ in
Fig. 5.2). Eventually the splitting point becomes unstable due to the competition with the polarized
normal state at the point in Eq. (5.35), which we estimate to be (akF)−1 ≈ 1.81 and mmajority/mminority ≈

5.54. Accordingly, the region for the superfluid phase with spatially varying condensate shrinks and
eventually disappears. The superfluid state with finite superfluid velocity is never realized for any
value of the binding energy εb for a sufficiently large mass difference where the majority is the heavier
fermions mmajority/mminority & 5.54. While our quantitative results are not reliable at three dimensions,
it is interesting to point out that our estimates on the mass ratios are well below the critical value at
d = 3, mheavy/mlight = 13.6, where the instability occurs due to the Efimov effect [134, 135, 136].
Further study will be worthwhile to confirm these possibilities.
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Chapter 6

Expansion around two spatial dimensions

6.1 Lagrangian and Feynman rules

In this Chapter, we formulate the systematic expansion for the unitary Fermi gas around two spatial
dimensions in a similar way as we have done for the ε = 4 − d expansion. Here we start with the
Lagrangian density given in Eq. (3.2) limited to the unpolarized Fermi gas in the unitarity limit where
H = 0 and 1/c0 = 0:

L = Ψ†
(
i∂t +

σ3∇2

2m
+ µσ3

)
Ψ + Ψ†σ+Ψφ + Ψ

†σ−Ψφ
∗. (6.1)

Then we expand the field φ around its vacuum expectation value φ0 as

φ = φ0 + ḡϕ, ḡ =
(
2πε̄
m

)1/2 (mµ
2π

)−ε̄/4
, (6.2)

where the effective coupling ḡ ∼ ε̄1/2 in Eq. (2.10) was introduced. The extra factor (mµ/2π)−ε̄/4 was
chosen so that the product of fields ϕ∗ϕ has the same dimension as the Lagrangian density 1.

Then we rewrite the Lagrangian density as a sum of three parts, L = L̄0 + L̄1 + L̄2, where

L̄0 = Ψ
†

(
i∂t +

σ3∇2

2m
+ µσ3 + σ+φ0 + σ−φ0

)
Ψ , (6.3)

L̄1 = −ϕ
∗ϕ + ḡΨ†σ+Ψϕ + ḡΨ†σ−Ψϕ∗, (6.4)

L̄2 = ϕ
∗ϕ . (6.5)

The part L̄0 represents the gapped fermion quasiparticle, whose propagator is given by

Ḡ(p0,p) =
1

p 2
0 − Ē 2

p + iδ

p0 + εp − µ −φ0

−φ0 p0 − εp + µ

 , (6.6)

1The choice of the extra factor is arbitrary, if it has the correct dimension, and does not affect the final results because
the difference can be absorbed into the redefinition of the fluctuation field ϕ. The particular choice of ḡ in Eq. (6.2) will
simplify the form of loop integrals in the intermediate steps.

47
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iḡσ+ iḡσ
− i

= iḠ = −ipropagators

vertices

Figure 6.1: Feynman rules for the expansion around two spatial dimensions from the Lagrangian
density in Eq. (6.3). The first line gives propagators, while the second line gives vertices.

with Ēp =
√

(εp − µ)2 + φ 2
0 being the usual gapped quasiparticle spectrum in the BCS theory.

The second part L̄1 represents the interaction between fermions induced by the auxiliary field ϕ.
The first term in L̄1 gives the propagator of the auxiliary field ϕ

D̄(p0,p) = −1, (6.7)

and the last two terms give vertices coupling two fermions and ϕ. If we did not have the part L̄2, we
could integrate out the auxiliary fields ϕ and ϕ∗ to lead to

L̄1 → ḡ2Ψ†σ+ΨΨ
†σ−Ψ = ḡ2ψ†

↑
ψ†
↓
ψ↓ψ↑, (6.8)

which gives the contact interaction of fermions with the small coupling ḡ2 ∼ ε̄ as depicted in Fig. 2.1.
The vertex in the third part L̄2 plays a role of a counter term so as to avoid double counting of a
certain type of diagram which is already taken into L̄1 as we will see below. The Feynman rules
corresponding to these Lagrangian densities are summarized in Fig. 6.1.

6.2 Power counting rule of ε̄

We can construct the similar power counting rule of ε̄ as in the case of the expansion around four
spatial dimensions. First, we make a prior assumption φ0/µ ∼ e−1/ε̄ , which will be checked later.
Since e−1/ε̄ is exponentially small compared to any powers of ε̄, we can neglect the contributions of φ0

when we expand physical observables in powers of ε̄. Then, since each pair of fermion and ϕ vertices
brings a factor of ε̄, the naive power of ε̄ for a given diagram is Nḡ/2, where Nḡ is the number of
couplings ḡ from L̄1.

However, this naive counting does not take into account the fact that there might be inverse powers
of ε̄ that come from integrals which have logarithmic divergences at d = 2. Each loop integral in the
ultraviolet region behaves as ∫

dp0dp ∼

∫
dp εp ∼ p4, (6.9)
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+ = O(ε̄)

(c)

(b)(a)

Figure 6.2: Two apparent exceptions of naive power counting rule of ε̄, (a, c). The boson self-energy
diagram (a) is combined with the vertex from L̄2 (b) to restore the naive ε̄ counting. The condition of
disappearance of the tadpole diagram (c) gives the gap equation to determine the value of condensate
φ0.

while each fermion propagator behaves, at worst, as Ḡ(p) ∼ p−2. Therefore, a given diagram may
diverges as ∼ pD withD being the superficial degree of divergence given by

D = 4L − 2PF. (6.10)

Here L is the number of loop integrals and PF is the number of fermion propagators. Using the similar
relations to Eq. (3.13),

L = PF + PB − Nḡ + 1,

Ng = PF +
EF

2
= 2PB + EB,

(6.11)

the superficial degree of divergence is written in terms of the number of external fermion (auxiliary
field) lines, EF(B), as

D = 4 − EF − 2EB. (6.12)

Therefore, the inverse power of ε̄ is possible only in diagrams which satisfies EF+2EB ≤ 4. Moreover
from the analytic properties of G(p) in the ultraviolet region discussed in Eq. (3.16), one can show
that there are only two skeleton diagrams which have the 1/ε̄ singularity near two dimensions. They
are one-loop diagrams of the boson self-energy [Figs. 6.2(a)], and the ϕ tadpole diagram [Fig. 6.2(c)].

The boson self-energy diagram in Fig. 6.2(a) is evaluated as

−iΠ̄a(p) = −ḡ2
∫

dk
(2π)d+1 G11

(
k +

p
2

)
G22

(
k −

p
2

)
= iḡ2

∫
dk

(2π)d

θ(εk+p2 − µ) − θ(µ − εk−p2 )

2εk − (p0 −
1
2εp + 2µ + iδ)

,

(6.13)
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where we have neglected the contribution of φ0. The integral over k is logarithmic divergent at d = 2
and has a pole at ε̄ = 0. Thus it is O(1) instead of O(ε̄) according to the naive counting. The residue
at the pole can be computed as

Π̄a(p) = −ḡ2
∫

dk

(2π)d

1
2εk − (p0 −

1
2εp + 2µ + iδ)

+ · · ·

= 1 + O(ε̄), (6.14)

which is cancelled out exactly by adding the vertex Π̄0 = −1 in L̄2. Therefore the diagram of the type
in Fig. 6.2(a) should be combined with the vertex from L̄2 in Fig. 6.2(b) to restore the naive ε̄ power
counting result, O(ε̄).

Similarly, the tadpole diagram in Fig. 6.2(c) also contains the 1/ε̄ singularity. The requirement that
this tadpole diagram should vanish by itself gives the gap equation to the leading order to determine
the condensate φ0 as wee will see in the succeeding section.

6.3 Gap equation

The condensate φ0 as a function of the chemical potential µ is determined by the gap equation which
is obtained by the condition of the disappearance of all tadpole diagrams. The leading contribution to
the gap equation is the one-loop diagram drawn in Fig. 6.2(c), which is given by

Ξ̄1 = ḡ
∫

dk
(2π)d+1 G21(k) = iḡ

∫
dk

(2π)d

φ0

2Ēp
. (6.15)

By changing the integration variable to z = εp/µ, we obtain

Ξ̄1 =
iḡφ0

2µ

(
mµ
2π

) d
2

Γ
(

d
2

) ∫ ∞

0
dz

zε̄/2√
(z − 1)2 + (φ0/µ)2

. (6.16)

The integration over z in the dimensional regularization can be performed to lead to

Ξ̄1 =
iḡφ0

µ

(
mµ
2π

) d
2

Γ
(

d
2

) [
ln

2µ
φ0
−

1
ε̄
+ O(ε̄2)

]
. (6.17)

The first term ln 2µ/φ0 originates from the singularity around the Fermi surface as is well known as the
Cooper instability, while the second term 1/ε̄ is from the logarithmic singularity of the k integration
at d = 2 in Ξ̄1. Solving the gap equation Ξ̄1 = 0, we obtain the condensate as φ0 = 2µ e−1/ε̄ . Note that
this result is equivalent to that obtained by the mean field BCS theory.

It is known that the pre–exponential factor in the mean field result φ0 = 2µ e−1/ε̄ is modified due
to the effects of medium [130, 131]. In the language of the tadpole diagrams, the corresponding
modification to the gap equation comes from the three-loop diagram Ξ̄3 depicted in Fig. 6.3. The
diagram, which seems proportional to g4 ∼ ε̄2, gives the O(1) correction to the gap equation.



6.3. Gap equation 51

Ξ̄3 =

Figure 6.3: The tadpole diagram which gives the medium-effect correction to the gap equation.

Using the Feynman rules, the tadpole diagram in Fig. 6.3 is given by

Ξ̄3 = −ḡ5
∫

dk dp dq
(2π)3d+3 Tr

[
Ḡσ+Ḡσ−Ḡσ+Ḡσ+Ḡσ−

]
= −ḡ5

∫
dk dp dq
(2π)3d+3 Ḡ11(p) Ḡ22(p) Ḡ11(p − k) Ḡ21(q) Ḡ22(q + k).

(6.18)

Since the second term in the product,

Ḡ11(p) Ḡ22(p) =
1

p 2
0 − Ē 2

p

+
φ 2

0

(p 2
0 − Ē 2

p)2
, (6.19)

gives only the O(ε̄2) correction to the gap equation, we can neglect it for the current purpose. Then
we perform the integration over p0 and q0 to result in

Ξ̄3 = −ḡ5
∫

dk dp dq

(2π)3d+1

φ0

4ĒpĒq

 Ēp − k0 + εp−k − µ

(Ēp − k0)2 − Ē 2
p−k

+
Ēp + εp − µ

(k0 + Ēp)2 − Ē 2
p+k


×

k0 + Ēq − εq+k + µ
(k0 + Ēq)2 − Ē 2

q+k

+
Ēq − εq + µ

(k0 − Ēq)2 − Ē 2
q−k

 . (6.20)

Because of the factor 1/ĒpĒq in the integrand, the integrations over p and q are dominated around the
Fermi surface where εp(q) ∼ µ and hence Ēp(q) ∼ φ0. Keeping only the dominant part in the integrand,
we can write the integral as

Ξ̄3 ' ḡ5
∫

dk dp dq

(2π)3d+1

φ0

4ĒpĒq

1
(k0 + εp−k − µ)(k0 + εq+k − µ)

∣∣∣∣∣∣
εp(q)=µ

. (6.21)

Now the integration over k0 can be performed easily to lead to

Ξ̄3 = −i
ḡ5

2
φ0

∫
dp dq

(2π)2d

1
ĒpĒq

∫
dk

(2π)d

θ(εq+k − µ) θ(µ − εp−k)
εq+k − εp−k

∣∣∣∣∣∣
εp(q)=µ

. (6.22)

If we evaluated the k integration at d = 3, we would obtain the static Lindhard function representing
the medium-induced interaction [21].

Here we shall evaluate Ξ̄3 at d = 2. Changing the integration variables to εp, εq, εk, cos χp = k̂ · p̂,
cos χq = k̂ · q̂, and performing the integrations over εp and εq, we obtain

Ξ̄3 ' −i
ḡ5

2
φ0

( m
2π

)3
(
2 ln

µ

φ0

)2 ∫
dεk dχp dχq

π2

θ(εq+k − µ) θ(µ − εp−k)
εq+k − εp−k

∣∣∣∣∣∣
εp(q)=µ

. (6.23)
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The range of the integrations over χp and χq are from 0 to π. Since φ0/µ ∝ e−1/ε̄ , we have (2 ln µ/φ0)2 ∼

(2/ε̄)2 which cancels ε̄2 coming from the four vertex couplings ḡ4. Finally the integrations can be
performed as follows:∫

dεk dχp dχq

π2

θ(εq+k − µ) θ(µ − εp−k)
εq+k − εp−k

=

∫ 4µ cos2χp

0
dεk

∫ π/2

0

dχp

π

∫ π/2

0

dχq

π

1

2
√
µεk

(
cos χp + cos χq

)
+

∫ 4µ cos2χp

4µ cos2χq

dεk

∫ π/2

0

dχp

π

∫ π−χp

π/2

dχq

π

1

2
√
µεk

(
cos χp + cos χq

)
=

1
2
,

(6.24)

which gives Ξ̄3 as

Ξ̄3 ' −iḡφ0
m
2π
. (6.25)

Consequently, the gap equation Ξ̄1 + Ξ̄3 = 0, which receives the O(1) correction due to Ξ̄3, is
modified as

ln
2µ
φ0
−

1
ε̄
− 1 + O(ε̄) = 0. (6.26)

The solution of the gap equation becomes

φ0 = 2µ exp
[
−

1
ε̄
− 1 + O(ε̄)

]
=

2µ
e

[1 + O(ε̄)] e−1/ε̄ , (6.27)

where the value of condensate is reduced by the factor e ≈ 2.71828. The reduction of the pre–
exponential factor due to the medium effects is known as the Gor’kov correction at d = 3 theo-
ries [130, 131].

6.4 Thermodynamic quantities

The value of the effective potential Veff at its minimum determines the pressure P = −V̄eff(φ0) at a
given chemical potential µ. Since the energy gain due to the superfluidity φ 2

0 ∼ e−2/ε̄ is exponentially
small compared to any power series of ε̄, we can simply neglect the contributions of φ0 to the pressure.
To the next-to-leading order, the effective potential receives contribution from two vacuum diagrams
drawn in Fig. 6.4: fermion loops without and with an exchange of the auxiliary field. The one-loop
diagram at φ0 = 0 is O(1) and given by

V̄1(0) = −2
∫

dp

(2π)d (µ − εp)> = −
2µ

(
mµ
2π

) d
2

Γ
(

d
2 + 2

) ≡ −Pfree, (6.28)
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+

O(1) O(ε̄)

Figure 6.4: Vacuum diagrams contributing to the pressure up to next-to-leading order in ε̄.

which represents the contributions of free fermions to the pressure. The two-loop diagram at φ0 = 0
is O(ε̄), which represents the density-density correlation as

V̄2(0) = −ḡ2
∫

dp dq
(2π)2d+2 Ḡ11(p)Ḡ22(q)

= −ḡ2
[∫

dp

(2π)d θ(µ − εp)
]2

= −ε
µ
(

mµ
2π

) d
2

Γ
(

d
2 + 1

)2 .

(6.29)

Thus we obtain the pressure up to the next-to-leading order in ε̄ as

P = (1 + ε̄) Pfree. (6.30)

Accordingly, the fermion number density is given by N = ∂P/∂µ = (1 + ε̄) Nfree. The Fermi
energy is obtained from the thermodynamics of free gas in d spatial dimensions as

εF =
2π
m

[
1
2
Γ

(
d
2
+ 1

)
N
]2/d

= (1 + ε̄) µ, (6.31)

which yields the universal parameter of the unitary Fermi gas from the ε̄ expansion as

ξ =
µ

εF
= 1 − ε̄ + O(ε̄2). (6.32)

6.5 Quasiparticle spectrum

To the leading order in ε̄, the dispersion relation of the fermion quasiparticle is given by ωF(p) =

Ēp =
√

(εp − µ)2 + φ 2
0 , which has the same form as that in the mean field BCS theory. There exist the

next-to-leading order corrections to the fermion quasiparticle spectrum from the one-loop self-energy
diagrams, −iΣ̄(p), depicted in Fig. 6.5. These corrections are only to the diagonal elements of the
self-energy and each element is evaluated as

Σ̄11(p) = −iḡ2
∫

dk
(2π)d+1 Ḡ22(k)

= −ḡ2
∫

dk

(2π)d θ(µ − εk) = −ε̄µ
(6.33)
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+−iΣ̄ =

Figure 6.5: One-loop diagrams contributing to the fermion self-energy in order O(ε̄).

and

Σ̄22(p) = −iḡ2
∫

dk
(2π)d+1 Ḡ11(k)

= ḡ2
∫

dk

(2π)d θ(µ − εk) = ε̄µ.
(6.34)

To this order, the self-energy is momentum independent, which effectively shifts the chemical poten-
tial due to the interaction with the other component of fermions.

By solving the equation det[Ḡ−1(ω,p)−Σ̄] = 0 in terms ofω, the dispersion relation of the fermion
quasiparticle up to the next-to-leading order is given by

ωF(p) =
√

(εp − µ − ε̄µ)2 + φ 2
0 . (6.35)

The minimum of the dispersion curve is located at a nonzero value of momentum, |p| = (2mε0)1/2,
where

ε0 = (1 + ε̄) µ. (6.36)

The location of the minimum coincides with the Fermi energy in Eq. (6.31), ε0 = εF, in agreement
with the Luttinger theorem [132]. The energy gap ∆ of the fermion quasiparticle is given by the
condensate,

∆ = φ0 =
2µ
e

e−1/ε̄ . (6.37)

6.6 Extrapolation to ε̄=1

Now we discuss the extrapolation of the expansion over ε̄ = d − 2 to the physical case at three spatial
dimensions. In contradiction to the case of ε = 4−d expansion, the coefficients of O(ε̄) corrections are
not small. If we naively extrapolate the leading and next-to-leading order results for ξ in Eq. (6.32),
∆ in Eq. (6.37), and ε0 in Eq. (6.36) to ε̄ = 1, we would have

ξ ≈ 0,
∆

µ
≈ 0.271,

ε0

µ
≈ 2, (6.38)

which are not as good as the extrapolations in the expansions over ε in Eq. (3.77). Thus, instead of
naively extrapolating the ε̄ expansions to d = 3, we use them as boundary conditions to improve the
series summation of the ε expansions in Chap. 7.
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Figure 6.6: Vacuum diagram contributing to the pressure to the order ε̄2. The counter vertex −iΠ̄0 = i
for each bubble diagram is understood implicitly. The other O(ε̄2) diagrams identically vanish.

6.7 NNLO correction for ξ

The order ε̄2 contribution to the effective potential or the pressure is solely given by the three-loop
diagram depicted in Fig. 6.6, which is written as

V̄3(0) =
i
2

∫
dk

(2π)d+1

1 + ḡ2
∫

dp

(2π)d

θ(εp+k2 − µ) − θ(µ − εp−k2 )

2εp − (k0 −
1
2εk + 2µ + iδ)

2

. (6.39)

where p0 integrations in each bubble diagram are already performed. Note that +1 in the bracket
comes from the counter vertex −Π̄0 = 1. We can see that the other O(ε̄2) diagrams identically vanish.
The integration over k0 in V̄3 leads to

V̄3(0) = −ḡ2
∫

dkdp

(2π)2d θ(µ − εp+k2 )θ(µ − εp−k2 )
1 + ḡ2

∫
dq

(2π)d

θ(εq+k2 − µ)θ(εq−k2 − µ)

2εq − 2εp

 . (6.40)

Due to the θ-functions, the range of integral over εk is limited to 0 ≤ εk ≤ 4µ and the range of integral
over εp is limited to 0 ≤ εp ≤ Λp, where

√
Λp =

−| cos χp|
√
εk +

√
4µ − εk sin2 χp

2
(6.41)

with cos χp = k̂ · p̂. Similarly, the range of integral over εq is limited to Λq ≤ εq where

√
Λq =

| cos χq|
√
εk +

√
4µ − εk sin2 χq

2
(6.42)

with cos χq = k̂ · q̂. Then the integration over εq is performed to result in

V̄3(0) = ε̄2 m
4π

∫ 4µ

0
dεk

∫ π

0

dχp

π

∫ π

0

dχq

π

∫ Λp

0
dεp ln

(
Λq − εp

µ

)
+ O(ε̄3). (6.43)

Finally, introducing the dimensionless variable z = εk/µ and performing the integration over εp, we
obtain the following expression for V3,

V̄3(0) = ε̄2 mµ2

4π

∫ 4

0
dz

∫ π

0

dχp

π

∫ π

0

dχq

π

[
Λ̃q ln Λ̃q − (Λ̃q − Λ̃p) ln(Λ̃q − Λ̃p) − Λ̃p

]
, (6.44)
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where Λ̃p(q) = Λp(q)/µ. The numerical integrations over z, χp, and χq give

V̄3(0) = ε̄2 mµ2

2π
× 0.0568528. (6.45)

Therefore, combining this result with Eqs. (6.28) and (6.29), we obtain the pressure up to the
next-to-next-to-leading order (NNLO) in ε̄ as

P = Pfree

[
1 + ε̄ +

(
γ

2
−

1
4

)
ε̄2 − 0.0568528 ε̄2

]
. (6.46)

Then ξ up to the order ε̄2 is found to be given by

ξ =
µ

εF
=

[
1 + ε̄ +

(
γ

2
−

1
4

)
ε̄2 − 0.0568528 ε̄2

]− 2
2+ε̄

= 1 − ε̄ + 1.51824 ε̄2 + O(ε̄3). (6.47)

Although the O(ε̄2) correction to the pressure is small, (2γ − 1)/4 − 0.0569 = −0.0182, the NNLO
correction to ξ turns out to be large because of the large O(ε̄) correction in the pressure.



Chapter 7

Matching of expansions around d = 4 and
d = 2

As we have mentioned previously, we shall match two expansions around d = 4 and d = 2, which are
studied in Chapters 3 and 6 respectively, in order to extract results at d = 3. We use the results around
two spatial dimensions as boundary conditions which should be satisfied by the series summations
of the expansions over ε = 4 − d. Because we do not yet have a precise knowledge on the large
order behavior of the expansion around four spatial dimensions, we assume its Borel summability
and employ Padé approximants.

Let us demonstrate the matching of two expansions by taking ξ as an example. In Ref. [96], the
linear interpolation between exact values at d = 2 (ξ = 1) and d = 4 (ξ = 0) was discussed to yield
ξ = 0.5 at d = 3. Now we have series expansions around these two exact limits. The expansion of ξ
in terms of ε = 4 − d is obtained in Eq. (3.43). Assuming the Borel summability of the ε expansion,
we write ξ as a function of ε in the form of the Borel transformation,

ξ(ε) =
ε3/2

2
exp

(
ε ln ε

8 − 2ε

) ∫ ∞

0
dt e−tBξ(εt), (7.1)

where we factorized out the non-trivial dependence on ε explicitly. Bξ(t) is the Borel transform of the
power series in ξ(ε), whose Taylor coefficients at origin is given from the ε expansion of ξ as

Bξ(t) = 1 −
(
3C −

5
4

(1 − ln 2)
)

t + · · · . (7.2)

In order to perform the integration over t in Eq. (7.1), the analytic continuation of the Borel
transform Bξ(t) to the real positive axis of t is necessary. Here we employ the Padé approximant,
where Bξ(t) is replaced by the following rational functions

Bξ(t) =
1 + p1t + · · · + pMtM

1 + q1t + · · · + qNtN . (7.3)

From Eq. (7.2), we require that the Padé approximants satisfy p1−q1 = −3C+ 5
4 (1−ln 2). Furthermore,

we incorporate the results around two spatial dimensions in Eq. (6.32) by imposing

ξ(2 − ε̄) = 1 − ε̄ + · · · (7.4)
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2 3 4
0

0.5

1

d

ξ

Figure 7.1: The universal parameter ξ as a function of the spatial dimensions d. The upper solid curve
is from the expansion around d = 4 in Eq. (3.43), while the lower solid line is from the expansion
around d = 2 in Eq. (6.32). The middle three curves show the different Borel–Padé approximants
connecting the two expansions. The diamond indicates the result ξ ≈ 0.42 from the Monte Carlo
simulation [86].

on the Padé approximants as a boundary condition. Since we have three known coefficients from the
two expansions, the Padé approximants [M/N] satisfying M + N = 3 are possible. Since we could
not find a solution satisfying the boundary condition ξ(2 − ε̄) = 1 − ε̄ for [M/N] = [2/1], we adopt
other three Padé approximants with [M/N] = [3/0], [1/2], [0/3], whose coefficients pm and qn are
determined uniquely by the above conditions.

Fig. 7.1 shows the universal parameter ξ as a function of the spatial dimensions d. The middle
three curves show ξ in the different Padé approximants connecting the two expansions around d = 4
and d = 2. These Borel–Padé approximants give ξ = 0.391, 0.364, and 0.378 at d = 3, which are
small compared to the naive extrapolation of the ε expansion to d = 3 (ξ → 0.475).

The Padé approximant above, however, almost certainly needs serious modification, since it is
known that in the expansion of ξ(ε), there exist non-analytic terms at sufficiently higher orders [102],

ξ(ε) =
ε3/2

2
exp

[
ε ln ε

8 − 2ε

] (
1 − 0.0492ε + #ε2 + #ε3 ln ε + · · ·

)
. (7.5)

An understanding of the structure of high-order terms in the perturbation theory around d = 4 is
currently lacking.



Chapter 8

Thermodynamics below Tc

Now we investigate the thermodynamics of the Fermi gas at finite temperature near the unitarity limit.
At zero temperature, we found that there exist two difference energy scales in the system; the scale
of condensate φ0 and that of chemical potential µ ∼ εφ0 � φ0. Accordingly, we can consider two
temperature regions where the unitary Fermi gas exhibits different thermodynamics.

One is the low temperature region where T ∼ εφ0. In this region, the energy gap of the fermion
quasiparticle ∆ ∼ φ0 is still large compared to the temperature. Therefore, thermal excitations of the
fermion quasiparticle are exponentially suppressed by a factor e−∆/T ∼ e−1/ε . The thermodynamics
in this region is dominated by the bosonic phonon excitations. The other temperature region is the
high temperature region where T ∼ φ0. (φ0 represents the condensate at zero temperature.) In this
region, the condensate decreases and eventually vanishes at the critical temperature Tc. Fermions and
bosons are equally excited here. We defer our discussion on the high temperature region to Chap. 9
and concentrate on the thermodynamics at the low temperature region T � Tc in this Chapter.

8.1 Finite temperature formalism

The extension to finite temperature T follows from the prescription of the imaginary time formalism.
The system under consideration is described by the following Lagrangian density with the imaginary
time 0 ≤ τ ≤ 1/T :

L0 = Ψ
†

(
∂τ −

σ3∇2

2m
− σ+φ0 − σ−φ0

)
Ψ + ϕ∗

(
∂τ −

∇2

4m

)
ϕ +

φ 2
0

c0
, (8.1)

L1 = −gΨ†σ+Ψϕ − gΨ†σ−Ψϕ∗ − µΨ†σ3Ψ −

(
2µ −

g2

c0

)
ϕ∗ϕ +

gφ0

c0
ϕ +

gφ0

c0
ϕ∗ , (8.2)

L2 = −ϕ
∗

(
∂τ −

∇2

4m

)
ϕ + 2µϕ∗ϕ . (8.3)

The propagators of fermion and boson are generated by L0. The fermion propagator is a 2× 2 matrix,

G(iωn,p) =
1

(iωn)2 − E 2
p

iωn + εp −φ0

−φ0 iωn − εp

 , (8.4)
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+

−Π12 =

−Π11 =

µB =

off-diagonal part :

diagonal parts :

µB

−Π0

Figure 8.1: Boson’s self-energies contributing to the order O(ε). Solid (dotted) lines represent the
fermion (boson) propagator −G (−D), while the cross in the first diagram represents the µB insertion
to the boson propagator. The vertex Π0 from L2 needs to be added to the second diagram. The last
diagram gives the off-diagonal part of the self-energy.

where εp = p2/2m, Ep =
√
ε 2
p + φ

2
0 and φ0 is the condensate in the superfluid ground state as before.

The boson propagator D is

D(iνn,p) =
(
iνn −

εp

2

)−1
. (8.5)

ωn = 2πT (n + 1
2 ) and νn = 2πTn are discrete Matsubara frequencies for fermion and boson with an

integer n = 0,±1,±2, · · · . The unitary Fermi gas around four spatial dimensions is described by the
weakly-interacting system of fermionic and bosonic quasiparticles, whose coupling g ∼ ε1/2 in L1

was introduced in Eq. (3.3) as

g =
(8π2ε)1/2

m

(mφ0

2π

)ε/4
. (8.6)

We define the counter vertex in L2 for the boson propagator by Π0(p0,p) = p0 − εp/2 and the boson
chemical potential by µB = 2µ − g2/c0. When c0 is negative, −g2/c0 ' εb gives the binding energy of
boson to the leading order in ε. We consider the vicinity of the unitary point where εb ∼ εφ0.

The power counting rule of ε developed at zero temperature in Sec. 3.2 holds in the low tempera-
ture region where the condensate is still large compared to the chemical potential µ/φ0 ∼ ε, while it
breaks down near the critical temperature because φ0 → 0 at T → Tc. In the high temperature region
T ∼ Tc, a minor modification of the power counting rule is necessary as we discuss in Chap. 9.

8.2 Phonon spectrum

The thermodynamics at the low temperature region T � φ0 is dominated by the phonon excitations.
In order to determine the phonon spectrum, we first study the boson self-energy at zero temperature.
To the order of O(ε), there are three types of contributions to the boson self-energy as depicted in
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Fig. 8.1. In addition to the chemical potential insertion µB = 2µ+εb, the one-loop diagrams contribute
to the diagonal part Π11 and off-diagonal part Π12 of the boson self-energy. The vertex Π0 from L2 is
necessary for Π11 according to the power counting rule described in Sec. 3.2. Then the diagonal part
of the boson self-energy is given by

Π11(p) = Π0(p) + Πa(p), (8.7)

where Π0 is defined in Eq. (3.10) and Πa is given by

−Πa(p) = g2
∫

idk0 dk
(2π)d+1 G11

(
k +

p
2

)
G22

(
k −

p
2

)
= g2

∫
dk

(2π)d

1
4Ek−p2 Ek+p2

(8.8)

×

 (Ek−p2 + εk−p2 )(Ek+p2 + εk+p2 )

Ek−p2 + Ek+p2 − p0
+

(Ek−p2 − εk−p2 )(Ek+p2 − εk+p2 )

Ek−p2 + Ek+p2 + p0

 .
Since we are interested in physics at the scale of temperature T � φ0, it is sufficient to evaluate the
self-energy when the external momentum is small p ∼ T � φ0. Expanding Π11(p) in terms of p/φ0

and performing the k integration with the use of the formula∫ ∞

0
dz

zα−1

(z + 1)β
=
Γ(α)Γ(β − α)
Γ(β)

, (8.9)

we obtain

Π11(p) ' −g2
∫

dk

(2π)d

E 2
k
+ ε2

k

4E 3
k

=
3
2
εφ0 + O(ε2). (8.10)

Similarly, the off-diagonal part of the boson-self energy is given by

−Π12(p) = g2
∫

idk0 dk
(2π)d+1 G12

(
k +

p
2

)
G12

(
k −

p
2

)
= −g2

∫
dk

(2π)d

φ 2
0

4Ek−p2 Ek+p2

 1
Ek−p2 + Ek+p2 − p0

+
1

Ek−p2 + Ek+p2 + p0

 . (8.11)

Expanding Π12(p) in terms of p/φ0 and performing the integration over k, we obtain

Π12(p) ' g2
∫

dk

(2π)d

φ 2

4E 3
k

=
1
2
εφ0 + O(ε2). (8.12)

As a result of the resummation of these self-energies, the resumed boson propagator D is ex-
pressed by the following 2 × 2 matrix:

D(p0,p) =

D(p)−1 + µB − Π11 −Π12

−Π21 D(−p)−1 + µB − Π22

−1

, (8.13)

where Π22 = Π11 and Π12 = Π21. The dispersion relation of the boson ωph(p) can be obtained by
solving the equation det[D−1(ω,p)] = 0 in terms of ω as

ωph(p) =

√(εp
2
− µB + εφ0

) (εp
2
− µB + 2εφ0

)
. (8.14)
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Figure 8.2: One-loop diagram of boson contributing the effective potential at finite temperature. The
dotted double line represents the resumed boson propagatorD in Eq. (8.13).

Note that this expression is valid as long as εp � φ0 because of the expansions made to evaluate the
boson self-energies. Substituting the leading order solution of the gap equation at zero temperature in
Eq. (3.38), µB = εφ0, the phonon spectrum is determined to be

ωph(p) =

√
εp

2

(εp
2
+ εφ0

)
. (8.15)

For the small momentum εp � εφ0, the dispersion relation becomes linear in the momentum as
ωph ' cs|p|, remaining gapless in accordance with the Nambu–Goldstone theorem. The sound velocity
of phonon cs is given by

cs =

√
εφ0

4m
∼ ε1/2. (8.16)

For the large momentum εp � εφ0, the dispersion relation approaches that of the free boson as
ωph ' εp/2.

8.3 Effective potential and condensate

At finite temperature, the phonon excitations contribute to the effective potential, and consequently,
the magnitude of the condensate decreases. The temperature dependent part of the effective potential
VT (φ0) to the lowest order in ε is given by the one-loop diagram of the boson with the resumed
propagator in Eq. (8.13) [Fig. 8.2]:

VT (φ0) =
T
2

∑
n

∫
dp

(2π)4 Tr ln
[
D(iνn,p)−1

]
=

∫
dp

(2π)4 T ln
[
1 − e−ωph(p)/T

]
.

(8.17)

The n-th interaction vertex among phonons ϕn is of the order εn/2 and appears in the effective potential
only at higher orders. Then the contribution of VT (φ0) to the gap equation is

∂VT (φ0)
∂φ0

=

∫
dp

(2π)4 fB(ωph)
∂ωph

∂φ0
, (8.18)
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where fB(x) = 1/(ex/T − 1) is the Bose distribution function and ∂ωph/∂φ0 is given from Eq. (8.14) by

∂ωph

∂φ0
= ε

3εp + 2εφ0

4ωph
. (8.19)

There are two limiting cases where the integration over p in Eq. (8.18) can be analytically per-
formed. Since the integral is dominated by the integration region where εp ∼ T , we can approximate
the phonon spectrum by its linear branch ωph(p) ' cs|p| when the temperature is very low T � εφ0.
In this case, the integration over p in Eq. (8.18) leads to

∂VT (φ0)
∂φ0

'
8ζ(3)T
φ0

(mT
2π

)2

. (8.20)

On the other hand, when the temperature is located in the intermediate region εφ0 � T � φ0, the
phonon spectrum can be approximated by its quadratic branchωph ' εp/2. In this case, the integration
over p in Eq. (8.18) results in

∂VT (φ0)
∂φ0

' ε
(mT )2

4
. (8.21)

Now, from the gap equation ∂(Veff(φ)+VT (φ))/∂φ = 0 with φ ≡ φ0+φT , one finds the temperature
dependent correction of the condensate φT satisfies

∂Veff(φ0)2

∂φ 2
0

φT +
∂VT (φ0)
∂φ0

= 0, (8.22)

where Veff is the effective potential at zero temperature in Eq. (3.36). To the leading order in ε, φT at
T � εφ0 is given by

φT = −
8ζ(3)T 3

φ 2
0

, (8.23)

while at εφ0 � T � φ0,

φT = −ε
π2T 2

φ0
. (8.24)

The condensate in total is φ = φ0 + φT , which decreases as the temperature increases. Note that since
φT � εφ0, the leading part of the condensate does not change in the temperature region considered
here T � φ0. The effective potential is given by the sum of the zero temperature and finite temperature
parts; Veff(φ0 + φT ) + VT (φ0 + φT ) ' Veff(φ0) + VT (φ0).

8.4 Thermodynamic functions at low temperature

The temperature dependent part of the pressure Pph at the low temperature region T � φ0 is given
from the effective potential in Eq. (8.17) by

Pph = −VT (φ0) = −
∫

dp

(2π)4 T ln
[
1 − e−ωph(p)/T

]
. (8.25)



64 Chapter 8. Thermodynamics below Tc

The phonon contributions to the fermion number density, the entropy density, and the energy density
are computed from the thermodynamic relations, Nph = ∂Pph/∂µ, S ph = ∂Pph/∂T , and Eph = µNph +

TS ph − Pph, respectively. Here we show analytic expressions for these thermodynamic functions in
the two cases where the analytic evaluation of the p integration in Eq. (8.25) is available.

When the temperature is very low T � εφ0, only the linear branch of the phonon spectrum
ωph(p) ' cs|p| is important to the thermodynamic functions. In this case, the integration over p can
be performed analytically to lead to

Pph '
12π2ζ(5)

(2π)4

T 5

c 4
s
=

12ζ(5)
π2

m2T 5

(εφ0)2 . (8.26)

Accordingly, we obtain the phonon contributions to the fermion number density, the entropy density,
and the energy density;

Nph = −
48ζ(5)
π2

m2T 5

(εφ0)3 , (8.27)

S ph =
60ζ(5)
π2

m2T 4

(εφ0)2 , (8.28)

Eph =
24ζ(5)
π2

m2T 5

(εφ0)2

(
1 +

εb

εφ0

)
. (8.29)

Since actual experiments or simulations are performed with the fixed fermion density, it is useful
to show the thermodynamic functions at fixed N instead of fixed µ. From Eqs. (3.38), (3.40), and
(8.27), we find the chemical potential for the fixed fermion density increases as a function of the
temperature as

µ = µ0 + 48ζ(5)
T 5

εφ 4
0

, (8.30)

where µ0 represents the chemical potential at zero temperature in Eq. (3.42). Normalizing µ by the
Fermi energy in Eq. (3.41), we have

µ

εF
=
µ0

εF
+

3ζ(5)
2ε3

(
2T
εF

)5

. (8.31)

The other thermodynamic functions for the fixed fermion number density are given by

P
εFN

=
P0

εFN
+

3ζ(5)
ε3

(
2T
εF

)5

, (8.32)

E
εFN

=
E0

εFN
+

6ζ(5)
ε3

(
2T
εF

)5

, (8.33)

S
N
=

15ζ(5)
ε3

(
2T
εF

)4

, (8.34)
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where P0 and E0 represent the pressure and energy density at zero temperature in Eqs. (3.44) and
(3.45), respectively. These expressions are valid in the low temperature region where T � εφ0.

On the other hand, when the temperature is located in the intermediate region εφ0 � T � φ0, we
can expand the phonon spectrum ωph(p) in terms of εφ0/εp up to its first order

ωph(p) '
εp

2
+
εφ0

2
. (8.35)

In this case, the integration over p can be performed analytically again to result in

Pph '
ζ(3)
π2 m2T 3 −

m2T 2

12
εφ0. (8.36)

Accordingly, we obtain the temperature dependent parts of the fermion number density, the entropy
density, and the energy density;

Nph = −
m2T 2

6
, (8.37)

S ph =
3ζ(3)
π2 m2T 2 −

m2T
6

εφ0, (8.38)

Eph =
2ζ(3)
π2 m2T 3 −

m2T 2

6
εφ0

(
1 −

εb

2εφ0

)
. (8.39)

From Eqs. (3.38), (3.40), and (8.37), we find the chemical potential for the fixed fermion density
increases as a function of the temperature as

µ = µ0 + ε
2π

2

6
T 2

φ0
. (8.40)

Normalizing µ by the Fermi energy in Eq. (3.41), we have

µ

εF
=
µ0

εF
+ ε3/2π

2

6

(
T
εF

)2

. (8.41)

The other thermodynamic functions for the fixed fermion number density are given by

P
εFN

=
P0

εFN
+ 4ζ(3)

(
T
εF

)3

− ε3/2π
2

6

(
T
εF

)2

, (8.42)

E
εFN

=
E0

εFN
+ 8ζ(3)

(
T
εF

)3

− ε3/2π
2

3

(
T
εF

)2

, (8.43)

S
N
= 12ζ(3)

(
T
εF

)2

− ε3/2 2π2

3
T
εF
. (8.44)

These expressions are valid in the intermediate temperature region where εφ0 � T � φ0.
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Figure 8.3: The behavior of the condensate φ as a function of the temperature T to the lowest order
in ε. φ0 = µB/ε is the value of the condensate at T = 0 and the critical temperature is located at
Tc/φ0 = 1/(2 ln 2) ≈ 0.721348.

8.5 Effective potential near Tc

At the end of this Chapter, we study the behavior of the condensate φ as a function of the temperature
for a given µ. The effective potential to the leading order in ε is given by one-loop diagrams of
fermion with and without one µ insertion, which is equivalent to the mean-field approximation. Since
the critical dimension of the superfluid-normal phase transition is four, the mean-field approximation
remains as a leading part at any temperature in the limit d → 4. Then the leading contribution to the
effective potential at finite temperature is given by

Veff(φ) = −
εb

g2φ
2 −

∫
dp

(2π)d

[
Ep −

εp

Ep
µ + 2T ln

(
1 + e−Ep/T

)
+ fF(Ep)

2εp
Ep

µ

]
,

where fF(x) = 1/(ex/T + 1) is the Fermi distribution function.
For the low temperature T � φ, we can neglect the exponentially small factor e−Ep/T � 1 and the

integration over p reproduces the leading order effective potential at zero temperature in Eq. (3.36).
In the opposite limit where φ � T , we can expand Veff in terms of φ/T to lead to

Veff(φ) = Veff(0) +
[
T ln 2 −

µB

2ε

] (mφ
2π

)2

+
φ2

16T

(mφ
2π

)2

+ · · · , (8.45)

where µB = 2µ+ εb. From the coefficient of the quadratic term in φ, we can read the critical tempera-
ture Tc to the leading order in ε as

Tc =
µB

ε 2 ln 2
+ O(ε), (8.46)

and the value of the condensate φ just below Tc as

φ2 = 8T (Tc − T ) ln 2 + O(ε). (8.47)

The critical exponent of the condensate φ ∼ (Tc − T )1/2 will be shifted if we include higher order
corrections to the effective potential. The condensate φ in the intermediate range of the temperature
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is obtained by solving the gap equation ∂Veff/∂φ = 0;

φ −
µB

ε
+

∫
dεp

2εp
Ep

fF(Ep) = 0. (8.48)

The numerical solution of the gap equation as a function of T is shown in Fig. 8.3.
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Chapter 9

Thermodynamics above Tc

9.1 Power counting rule of ε near Tc

In the ε expansion at the zero or low temperature region, the chemical potential is small compared to
the condensate µ ∼ εφ0 and we made expansions in terms of µ/φ0 ∼ ε as well as the small coupling
g ∼ ε1/2. Near the critical temperature, the ratio µ/φ is no longer small because φ vanishes at T = Tc,
but µ/Tc is O(ε) as it is clear from Tc = µB/(ε 2 ln 2). Therefore, we can still treat the chemical
potential as a small perturbation near Tc and the same power counting rule of ε described in Sec. 3.2
holds even above Tc just by replacing φ0 with T . Hereafter we consider T ∼ Tc to be O(1).

9.2 Boson’s thermal mass

First we study the self-energy of boson at T ≥ Tc. The leading contribution to the self-energy is the
chemical potential insertion µB as well as the one-loop diagram Π11 shown in Fig. 8.1:

Π11(iν,p) − Π0(iν,p) = g2 T
∑

n

∫
dk

(2π)d G11(iωn + iν,k + p)G22(iωn,k)

= −g2
∫

dk

(2π)d

1 − fF(εk−p/2) − fF(εk+p/2)
2εk − iν + εp/2

.

(9.1)

For the zero Matsubara frequency mode νn = 0 at the small momentum εp � T , we have

Π11(0,0) ' g2
∫

dk

(2π)4

fF(εk)
εk

= ε T 2 ln 2. (9.2)

Therefore, the zero Matsubara frequency mode has the non-negative thermal mass ΠT = ε T 2 ln 2 −
µB ∼ ε at T ≥ Tc. The condition of the vanishing thermal mass ΠT = 0 gives the critical temperature
Tc = µB/(ε 2 ln 2) equivalent to Eq. (8.46). As we will see below, at a sufficiently high order in the
perturbation theory near Tc [ε2 (ε) compared to the leading term in the pressure (fermion density)],
the resummation of the boson self-energy is needed to avoid infrared singularities appearing in the
zero Matsubara frequency mode.

69
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+

Figure 9.1: Three types of diagrams contributing to the pressure up to the next-to-leading order in ε.
Each µ (µB) insertion to the fermion (boson) line reduces the power of ε by one.

9.3 Pressure

Now we calculate the thermodynamic functions at T ≥ Tc to the leading and next-to-leading orders in
ε. There are three types of diagrams contributing to the pressure up to the next-to-leading order in ε as
depicted in Fig. 9.1; one-loop diagrams with and without one µ (µB) insertion and two-loop diagram
with a boson exchange. Note that at T ≥ Tc, the boson’s one-loop diagram contributes as O(1) as well
as the fermion’s one-loop diagram. Then the pressure from the one-loop diagrams is given by

P1 =

∫
dp

(2π)d

[
2T ln

(
1 + e−εp/T

)
− T ln

(
1 − e−εp/2T

)
+ 2µ fF(εp) + µB fB(εp/2)

]
= T

[
11
2
ζ(3) −

9 ln 2 ζ(3) + 11ζ′(3)
4

ε +
π2

6
µ

T
+

2π2

3
µB

T

] (mT
2π

)d/2

.

(9.3)

The contribution from the two-loop diagram to the pressure, which is O(ε), is given by

P2 = g2 T 2
∑
n,m

∫
dp dq

(2π)2d G11(iωn,p)G22(iωm, q)D(iωn − iωm,p − q)

= −g2
∫

dp dq

(2π)2d

fF(εp) fF(εq) +
[
fF(εp) + fF(εq)

]
fB(εp−q/2)

εp + εq − εp−q/2
.

(9.4)

The numerical integrations over p and q result in

P2 = −CPε
(mT

2π

)d/2

T, (9.5)

where CP ≈ 8.4144. From Eqs. (9.3) and (9.5), we obtain the pressure up to the next-to-leading order
in ε as

P = P1 + P2

= T
[
11
2
ζ(3) −

9 ln 2 ζ(3) + 11ζ′(3)
4

ε − ε CP +
π2

6
µ

T
+

2π2

3
µB

T

] (mT
2π

)d/2

.
(9.6)

The entropy density S and the energy density E to the same order can be computed from the thermo-
dynamic relations S = ∂P/∂T and E = µN + TS − P.
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9.4 Fermion number density

The fermion number density to the next-to-leading order in ε can not be obtained simply by differenti-
ating the pressure in Eq. (9.6) with respect to the chemical potential N = ∂P/∂µ. Since the pressure to
the leading order in ε does not depend on µ and the µ derivative ∂/∂µ ∼ 1/ε enhances the power of ε
by one, we need to compute the one-loop diagrams with two µ (µB) insertions and two-loop diagrams
with one µ (µB) insertion. Then the fermion density from the fermion’s one-loop diagrams is given by

NF = 2
∫

dp

(2π)d

[
fF(εp) +

µ

T
fF(εp) fF(−εp)

]
=

[
π2

6
−
π2 ln 2 + 6ζ′(2)

12
ε +

2 ln 2
T

µ

] (mT
2π

)d/2

.

(9.7)

On the other hand, the boson’s one-loop diagrams contribute to the fermion density as

NB = 2
∫

dp

(2π)d

[
fB(εp/2) −

µB

T
fB(εp/2) fB(−εp/2)

]
. (9.8)

Apparently, the last term has an infrared singularity because the Bose distribution function behaves
as fB(εp/2) ' 2T/εp at the small momentum εp � T . In order to resolve this infrared singularity,
the resummation of the boson self-energy Π11 = ε T 2 ln 2 is needed at the small momentum region
εp ∼ µ. Within the accuracy we are working, we can rewrite NB as

NB = 2
∫

dp

(2π)d

[
fB(εp/2 + ΠT ) − ε 2 ln 2 fB(εp/2) fB(−εp/2)

]
, (9.9)

where ΠT = ε T 2 ln 2 − µB. Now the first term is infrared finite, where the boson’s thermal mass
ΠT/T = (2 ln 2)ε −µB/T plays a role of an infrared cutoff. Integrating over p and expanding up to the
next-to-leading order in ε, we have

2
∫

dp

(2π)d fB(εp/2 + ΠT )

=

[
4π2

3
−

2π2 ln 2 + 12ζ′(2)
3

ε − 8
(
1 − ln

ΠT

T

)
ΠT

T
+ O(ε2)

] (mT
2π

)d/2

.

(9.10)

The logarithmic term ∼ lnΠT/T appears as a consequence of the resummation. The second term
in Eq. (9.9), which is still infrared divergent, will cancel with the infrared singularity existing in the
two-loop diagram.

The contribution from the two-loop diagrams to the fermion density is given by

N2 = −g2
∫

dk dp

(2π)2d (9.11)

×
fF(εk+p/2) fF(−εk+p/2)

[
fF(εk−p/2) + fB(εp/2)

]
− 2 fF(εk+p/2) fB(εp/2) fB(−εp/2)

εkT
.
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The second term in the numerator contains the infrared singularity at small εp. Extracting the diver-
gent part, we can rewrite N2 as

N2 = −g2
∫

dk dp

(2π)2d

fF(εk+p/2) fF(−εk+p/2)
[
fF(εk−p/2) + fB(εp/2)

]
εkT

+ g2
∫

dk dp

(2π)2d

2
[
fF(εk+p/2) − fF(εk)

]
fB(εp/2) fB(−εp/2)

εkT

+ 2g2
∫

dk dp

(2π)2d

fF(εk)
εkT

fB(εp/2) fB(−εp/2). (9.12)

One finds the k integration in the last term can be performed to lead to Π11 = ε T 2 ln 2 in Eq. (9.2),
which exactly cancels out the infrared divergent part in Eq. (9.9). The numerical integrations over k

and p in the first two terms result in

N2 = −CNε
(mT

2π

)d/2

+ ε 4 ln 2
∫

dp

(2π)d fB(εp/2) fB(−εp/2), (9.13)

where CN ≈ 1.92181. Gathering up all contributions, Eqs. (9.7), (9.9), and (9.13), the fermion number
density to the leading and next-to-leading orders is given by

N = NF + NB + N2

=

[
3π2

2
−

3π2 ln 2 + 18ζ′(2)
4

ε − ε CN +
2 ln 2

T
µ − 8

(
1 − ln

ΠT

T

)
ΠT

T

] (mT
2π

)d/2

.
(9.14)

We define the Fermi energy εF through the relationship in Eq. (3.41) as

εF

T
=

2π
m

[
1
2
Γ

(
d
2
+ 1

)
N
]2/d

=

√
3π2

2

[
1 +

{
2γ − 3 − 2 ln 2

8
−

3ζ′(2)
2π2 −

CN

3π2 +
1
8

ln
(
3π2

2

)}
ε (9.15)

+
2 ln 2
3π2

µ

T
−

8
3π2

(
1 − ln

ΠT

T

)
ΠT

T

]
.

The logarithmic correction (ΠT/T ) lnΠT/T ∼ ε ln ε is a consequence of the resummation to avoid the
infrared singularities, while it vanishes at the critical temperature ΠTc = ε Tc 2 ln 2 − µB = 0.

9.5 Critical temperature

The critical temperature in units of the Fermi energy directly follows from Eq. (9.15) with the use of
the relationship 2µ + εb = ε Tc 2 ln 2:

Tc

εF
=

√
2

3π2

[
1 −

{
2γ − 3 − 2 ln 2

8
−

3ζ′(2)
2π2 −

CN − 2(ln 2)2

3π2 +
1
8

ln
(
3π2

2

)}
ε

]
+

ln 2
3π2

εb

εF

= 0.260 − 0.0112 ε + 0.0234
εb

εF
+ O(ε2), (9.16)
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where the numerical value CN ≈ 1.92181 is substituted. We find the critical temperature Tc is an
increasing function of the binding energy εb near the unitarity limit. The next-to-leading order cor-
rection is reasonably small compared to the leading term even at ε = 1. The naive extrapolation of
the critical temperature to the physical case of d = 3 gives Tc/εF ≈ 0.249 in the unitarity limit εb = 0.
This value is surprisingly close to results from two Monte Carlo simulations, Tc/εF = 0.23(2) [89]
and Tc/εF ≈ 0.25 [92], while other two simulations provide smaller values, Tc/εF < 0.14 [90] and
Tc/εF = 0.152(7) [91].

It is also interesting to compare the critical temperature in the unitarity limit with that in the BEC
limit TBEC. In the BEC limit, all fermion pairs are confined into tightly bound molecules and the
system becomes a non-interacting Bose gas where the boson mass is 2m and the boson density is
N/2. The critical temperature for the Bose-Einstein condensation of such an ideal Bose gas at d > 2
spatial dimensions becomes

TBEC

εF
=

1
2

[
ζ

(
d
2

)
Γ

(
1 +

d
2

)]−2/d

. (9.17)

To the leading and next-to-leading orders in ε = 4 − d, the ratio of the critical temperatures in the
unitarity limit Tc and in the BEC limit TBEC at the same fermion density is given by

Tc

TBEC
=

√
8
9

[
1 + 0.0177 ε + O(ε2)

]
= 0.943 + 0.0167 ε + O(ε2). (9.18)

The ratio is slightly below unity, indicating the lower critical temperature in the unitarity limit Tc <

TBEC. The leading order term of the above ratio, Tc/TBEC =
√

8/9, has the following clear physical
interpretation: The critical temperature for the Bose-Einstein condensation at d = 4 is proportional
to a square root of the boson’s density. In the BEC limit, all fermion pairs form the bound bosons,
while only 8 of 9 fermion pairs form the bosons and 1 of 9 fermion pairs is dissociated in the unitarity
limit [see the leading order terms in Eqs. (9.7) and (9.10)]. Thus, their ratio in the critical temperature
should be Tc/TBEC =

√
8/9 < 1 at d = 4.

The more appropriate estimate of Tc at d = 3 will be obtained by matching the ε expansion with
the exact result around d = 2. The critical temperature at unitarity in the expansion over ε̄ = d − 2
is given by Tc = (eγ/π)∆, where ∆/εF = (2/e) e−1/ε̄ is the energy gap of the fermion quasiparticle at
zero temperature [94]:

Tc

εF
=

2eγ−1

π
e−1/ε̄ [1 + O(ε̄)] . (9.19)

We shall write the power series of ε̄ in the form of the Borel transformation,

Tc(ε̄)
εF
=

2eγ−1

π
e−1/ε̄

∫ ∞

0
dt e−tBTc(ε̄t). (9.20)

BTc(t) is the Borel transform of the power series in Tc(ε̄), whose Taylor coefficients at origin is given
by BTc(t) = 1 + · · · . In order to perform the integration over t in Eq. (9.20), the analytic continuation
of the Borel transform BTc(t) to the real positive axis of t is necessary. Here we employ the Padé
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Figure 9.2: The critical temperature Tc at unitarity as a function of the spatial dimensions d. The
upper solid line is from the expansion around d = 4 in Eq. (9.16), while the lower solid line is from
the expansion around d = 2 in Eq. (9.19). The middle two curves show the different Borel–Padé
approximants connecting the two expansions. The symbols at d = 3 indicate the results from the
Monte Carlo simulations; Tc/εF = 0.23(2) [89] (circle), Tc/εF < 0.14 [90] (down arrow), Tc/εF =

0.152(7) [91] (diamond), and Tc/εF ≈ 0.25 [92] (square).

approximant, where BTc(t) is replaced by the following rational functions

BTc(t) =
1 + p1t + · · · + pMtM

1 + q1t + · · · + qNtN . (9.21)

Then we incorporate the results around four spatial dimensions in Eq. (9.16) by imposing

Tc(2 − ε)
εF

= 0.260 − 0.0112 ε + · · · (9.22)

on the Padé approximants as a boundary condition. Since we have two known coefficients from the
ε expansion, the Padé approximants [M/N] satisfying M + N = 2 are possible. Since we could not
find a solution satisfying the boundary condition in Eq. (9.22) for [M/N] = [1/1], we adopt other two
Padé approximants with [M/N] = [2/0], [0/2], whose coefficients pm and qn are determined uniquely
by the above conditions.

Fig. 9.2 shows the critical temperature Tc in units of the Fermi energy εF as a function of the spatial
dimensions d. The middle two curves show Tc/εF in the different Padé approximants connecting the
two expansions around d = 4 and d = 2. These Borel–Padé approximants give Tc/εF = 0.173 and
0.192 at d = 3, which are located between the naive extrapolations to d = 3 from the ε = 4 − d
expansion (Tc/εF → 0.249) and the ε̄ = d − 2 expansion (Tc/εF → 0.153). It is also interesting to
compare our results with those from the recent Monte Carlo simulations, where Tc/εF = 0.23(2) [89],
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Tc/εF < 0.14 [90], Tc/εF = 0.152(7) [91], and Tc/εF ≈ 0.25 [92]. Although these results from the
Monte Carlo simulations seem not to be settled, the interpolation of the two expansions provides the
moderate value Tc/εF = 0.183 ± 0.014 not too far from the Monte Carlo simulations.

9.6 Thermodynamic functions at Tc

Finally we show the thermodynamic functions at Tc in the unitarity limit εb = 0 to the leading and
next-to-leading orders in ε. The pressure P normalized by the fermion density εFN follows from
Eqs. (9.6), (9.14), and (9.15). Introducing the numerical values CP ≈ 8.4144 and CN ≈ 1.92181, we
obtain the pressure up to the next-to-leading order in ε as

P
εFN

∣∣∣∣∣
Tc

= 0.116 + 0.0188 ε. (9.23)

From the universal relationship in the unitarity limit E = (d/2)P, the energy density is given by

E
εFN

∣∣∣∣∣
Tc

= 0.232 − 0.0205 ε. (9.24)

The chemical potential at the critical temperature µ = ε Tc ln 2 is O(ε). Normalizing µ by the Fermi
energy in Eq. (9.16), we have

µ

εF

∣∣∣∣∣
Tc

= ε ln 2

√
2

3π2 = 0.180 ε. (9.25)

Then the entropy density TcS = (d/2 + 1)P − µN is given by

S
N

∣∣∣∣∣
Tc

= 1.340 − 0.642 ε. (9.26)

The next-to-leading order corrections to the pressure and energy density are reasonably small com-
pared to the leading order terms, while that is large for the entropy density.

We match the thermodynamic functions at Tc in the expansions over ε = 4 − d with those around
d = 2 as we demonstrated for Tc/εF. The critical temperature around d = 2 is Tc/εF ∼ e−1/ε̄ , which is
exponentially small and negligible compared to any power series of ε̄. Therefore, the pressure, energy
density, and chemical potential at Tc in the expansions over ε̄ = d − 2 is simply given by those at zero
temperature [94];

P
εFN

∣∣∣∣∣
Tc

=
2

d + 2
ξ =

1
2
−

5
8
ε̄, (9.27)

E
εFN

∣∣∣∣∣
Tc

=
d

d + 2
ξ =

1
2
−

3
8
ε̄, (9.28)

µ

εF

∣∣∣∣∣
Tc

= ξ = 1 − ε̄. (9.29)
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Tc/εF P/(εFN) E/(εFN) µ/εF S/N
ε expansion (NLO) 0.249 0.135 0.212 0.180 0.698
Borel–Padé approximant 0.183 0.172 0.270 0.294 0.642
self-consistent approach [78] 0.160 0.204 0.304 0.394 0.71
Monte Carlo simulation [89] 0.23(2) 0.27 0.41 0.45 0.99
Monte Carlo simulation [91] 0.152(7) 0.207(7) 0.31(1) 0.493(14) 0.16(2)

Table 9.1: Comparison of the results by the ε expansion with other analytic and numerical calculations
in the unitarity limit.

A straightforward calculation shows that the entropy per particle at Tc to the leading order in ε̄ is
given by

S
N

∣∣∣∣∣
Tc

=
π2

3
Tc

εF
=

2πeγ−1

3
e−1/ε̄ . (9.30)

Using the Borel–Padé approximants connecting the two expansions above, thermodynamic func-
tions at d = 3 are found to be P/(εFN)|Tc

= 0.172 ± 0.022, E/(εFN)|Tc
= 0.270 ± 0.004, µ/εF|Tc

=

0.294 ± 0.013, and S/N|Tc = 0.642. The errors here indicates only the uncertainty due to the choice
of different Padé approximants. In Table 9.1, we summarize our results on the critical temperature Tc

and the thermodynamic functions at Tc as well as results from other analytic and numerical calcula-
tions. In the recent Monte Carlo simulation, the thermodynamic functions at the critical temperature
is P/(εFN)|Tc

= 0.207(7), E/(εFN)|Tc
= 0.31(1), µ/εF|Tc

= 0.493(14), and S/N |Tc = 0.16(2) [91]. We
see that the interpolations of the two expansions indeed improve the series summations compared to
the naive extrapolations from d = 4 or d = 2, while there still exist deviations between our results and
the Monte Carlo simulation. We can understand these deviations partially due to the difference in the
determined critical temperature. The large deviations existing in µ/εF and S/N may be because we
know only the leading term for µ and the next-to-leading order correction for S is sizable.



Chapter 10

Summary and concluding remarks

We have developed the systematic expansion for the Fermi gas near the unitarity limit treating the
dimensionality of space d as close to four. To the leading and next-to-leading orders in the expansion
over ε = 4 − d, the thermodynamic functions and the fermion quasiparticle spectrum were calculated
as functions of the binding energy εb of the two-body state. Results for the physical case of three
spatial dimensions were obtained by extrapolating the series expansions to ε = 1. We found the
universal parameter of the unitary Fermi gas to be

ξ ≡
µ

εF
=

1
2
ε3/2 +

1
16
ε5/2 ln ε − 0.0246 ε5/2 + O(ε7/2) ≈ 0.475. (10.1)

The fermion quasiparticle spectrum in the unitarity limit was given by the formωF(p) '
√

(εp − ε0)2 + ∆2

with the energy gap
∆

µ
=

2
ε
− 0.691 + O(ε) ≈ 1.31 (10.2)

and the location of the minimum of the dispersion curve

ε0

µ
= 2 + O(ε) ≈ 2. (10.3)

We also found the condensate fraction in the fermion density to be

N0

N
= 1 − 0.0966 ε − 0.2423 ε2 + O(ε3) ≈ 0.661. (10.4)

Although we have only the first two terms in the ε expansion, these extrapolated values give reason-
able results consistent with the Monte Carlo simulations or the experimental measurements. Further-
more, the corrections are not too large even when extrapolated to ε = 1, which suggests that the picture
of the unitary Fermi gas as a collection of weakly interacting fermionic and bosonic quasiparticles
may be a useful starting point even in three spatial dimensions.

We have also formulated the systematic expansion for the unitary Fermi gas around two spatial
dimensions. We used the results around d = 2 as boundary conditions which should be satisfied
by the series summations of the expansion over ε = 4 − d. The simple Borel–Padé approximants
connecting the two expansions yielded ξ = 0.378 ± 0.013 at d = 3, which is small compared to
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the naive extrapolation of the ε expansion [Fig. 7.1]. In order for the accurate determination of ξ
at d = 3, the precise knowledge on the large order behavior of the expansion around four spatial
dimensions as well as the calculation of higher order corrections would be desirable. Once these
information become available, a conformal mapping technique, if applicable, will further improve the
series summations [133].

In Chapters 4 and 5, the phase structure of the polarized Fermi gas in the unitary regime with equal
and unequal masses has been studied based on the ε expansion. The gapless superfluid phase and the
superfluid phase with spatially varying condensate were found to exist between the gapped superfluid
phase and the polarized normal phase in a certain range of the binding energy and the mass difference.
In the equal mass limit, our study gives a microscopic foundation to the phase structure around the
splitting point which has been proposed using the effective field theory [112]. Moreover, we found the
gapless phase with spatially varying condensate around d = 4 exists only at 0.494 . (akF)−1 . 1 and
terminates near the unitarity limit. Our result suggests that the phase with spatially varying condensate
existing in the unitary regime may be separated from the FFLO phase in the BCS regime [124, 125].
We also found the splitting point and the same phase structure around it in the unitarity limit but with
finite mass difference when the majority is the lighter fermions. The range of the superfluid phase
with spatially varying condensate can be estimated to be 1.37 . mminority/mmajority . 3. The splitting
points form a smooth line in the three-dimensional phase diagram of 1/(akF), the mass difference
κ, and polarization chemical potential H. It gets away from the unitarity with increasing the mass
of major fermions. Eventually the splitting point becomes unstable due to the competition with the
polarized normal state at the point given by (akF)−1 ≈ 1.81 and mmajority/mminority ≈ 5.54. Further
investigation will be worthwhile to confirm these possibility.

In Chapters 8 and 9, the thermodynamics of the Fermi gas near the unitarity limit at finite tem-
perature has been investigated using the systematic expansion over ε = 4 − d. We discussed that the
thermodynamics in the low temperature region T � Tc is dominated by the bosonic phonon excita-
tions. The analytic formulas for the thermodynamic functions at the fixed fermion density are derived
in the two limiting cases; T � εTc in Eqs. (8.31)–(8.34) and εTc � T � Tc in Eqs. (8.41)–(8.44).
In the high temperature region T ∼ Tc, the fermionic quasiparticles are excited as well as the bosonic
quasiparticles. We showed that the similar power counting rule of ε to that developed at zero temper-
ature works even above Tc. The critical temperature Tc and the thermodynamic functions around Tc

were calculated to the leading and next-to-leading orders in ε. We found the critical temperature is an
increasing function of the binding energy εb near the unitarity limit:

Tc

εF
= 0.260 − 0.0112 ε + 0.0234

εb

εF
+ O(ε2). (10.5)

The next-to-leading order correction is reasonably small compared to the leading term even at ε = 1.
In the unitarity limit εb = 0, the naive extrapolation of the critical temperature to the physical case of
d = 3 gives Tc/εF ≈ 0.249.

We also discussed the matching of the ε expansion with the expansion around d = 2. The critical
temperature at unitarity in the expansion over ε̄ = d − 2 is given by Tc/εF =

(
2eγ−1/π

)
e−1/ε̄ , whose
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Figure 10.1: The Fermi gas at infinity scattering length akF → ∞ as a function of the spatial dimension
d. At d < 2, such a system becomes a free Fermi gas, while the limit of zero-range interaction
r0kF → 0 can not be taken at d > 4. Therefore, the non-trivial universal limit exists only at 2 < d < 4.

naive extrapolation to ε̄ = 1 gives Tc/εF ≈ 0.153. The Borel–Padé approximants connecting the
two expansions yielded Tc/εF = 0.183 ± 0.014 at d = 3, which is a moderate value located between
the two naive extrapolations [Fig. 9.2]. These values are not too far from the results obtained by
the recent Monte Carlo simulations where Tc/εF = 0.15 ∼ 0.25 [89, 91, 92]. We also applied the
Borel–Padé approximants to the thermodynamic functions at Tc, which yielded P/(εFN)|Tc

≈ 0.172,
E/(εFN)|Tc

≈ 0.270, µ/εF|Tc
≈ 0.294, and S/N|Tc ≈ 0.642 at d = 3.

We conclude that the ε expansion is not only theoretically interesting but also provides us an
useful analytical tool to investigate the properties of the unitary Fermi gas. Although our results
are consistent with those from Monte Carlo simulation, there are several problems which should
be clarified in future. For example, the Borel–Padé approximants employed here to match the two
expansions around four and two spatial dimensions do not take into account the large order behavior
of the expansions around d = 4 and d = 2. Most probably, the expansions over ε = 4−d and ε̄ = d−2
are not convergent because d = 4 and d = 2 corresponds to the quantum phase transition points as
depicted in Fig. 10.1. Thus the Borel transform B(t) of such series expansions will have singularities
somewhere in the complex t-plane. Furthermore, an understanding of the analytic structure of high-
order terms in the perturbation theory around d = 4 is currently lacking. In order for the accurate
determination of the universal quantities, e.g., ξ, Tc/εF, at d = 3, it will be important to appropriately
take into account the knowledge on the large order behaviors of the expansions both around four and
two spatial dimensions. The calculation of higher order corrections to our results is also important
for this purpose. In Appendix, we show a type of diagrams which grows as a factorial of n at order
εn and may be related with the large order behavior of the ε expansion. These problems should be
further studied in future works. Also the application of the ε expansion to investigate other problems
of the unitary Fermi gas, including its dynamical properties (dynamical response functions and kinetic
coefficients) and the structure of superfluid vortices, will be extremely interesting.
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Appendix A

Large orders in the ε = 4 − d expansion

In this Appendix, we show that there exists a type of diagrams which grows as n! by itself at order εn

of the ε = 4 − d expansion. Such a factorial contribution originates from the large momentum region
of the loop integrals which resembles the ultraviolet renormalon in relativistic field theories [137,
138, 139]. An example of the n + 1-loop diagram contributing to the effective potential as n! at O(εn)
is depicted in Fig. A.1, which can be written as

Vn =
i
n

∫
dk

(2π)d+1 [(Π0(k) + Πa(k)) D(k)]n , (A.1)

where Π0(k), Πa(k), and D(k) are respectively defined in Eqs. (3.10), (3.17), and (3.8). Introducing
these definitions and integrating over k0, we obtain the following expression for Vn,

Vn =
i
n

∫
dk

(2π)d+1

1 + −g2

k0 −
εk
2 + iδ

∫
dp

(2π)d

1
4Ep−k2 Ep+k2

×

 (Ep−k2 + εp−k2 )(Ep+k2 + εp+k2 )

Ep−k2 + Ep+k2 − k0 − iδ
+

(Ep−k2 − εp−k2 )(Ep+k2 − εp+k2 )

Ep−k2 + Ep+k2 + k0 − iδ


n

= −
g2

4

∫
dkdp

(2π)2d

(Ep−k2 − εp−k2 )(Ep+k2 − εp+k2 )

Ep−k2 Ep+k2
(
Ep−k2 + Ep+k2 +

εk
2

)
×

1 + g2

Ep−k2 + Ep+k2 +
εk
2

∫
dq

(2π)d

1
4Eq−k2 Eq+k2

×

 (Eq−k2 + εq−k2 )(Eq+k2 + εq+k2 )

Eq−k2 + Eq+k2 + Ep−k2 + Ep+k2
+

(Eq−k2 − εq−k2 )(Eq+k2 − εq+k2 )

Eq−k2 + Eq+k2 − Ep−k2 − Ep+k2


n−1

.

(A.2)

Then we consider the q integration in the bracket. Since the q integration contains a logarithmic
divergence at d = 4, we subtract and add its divergent piece as

1 +
g2

Ep−k2 + Ep+k2 +
εk
2

∫
dq

(2π)d

1
4Eq−k2 Eq+k2

{
· · ·

}
= 1 +

g2

Ep−k2 + Ep+k2 +
εk
2

∫
dq

(2π)d

 1
4Eq−k2 Eq+k2

{
· · ·

}
−

1
2εq + Ep−k2 + Ep+k2 +

εk
2


+

g2

Ep−k2 + Ep+k2 +
εk
2

∫
dq

(2π)d

1
2εq + Ep−k2 + Ep+k2 +

εk
2

.

(A.3)
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1

n

2 n−1

Figure A.1: A n-th order diagram at d = 4 which contributes to the effective potential as n! by itself.
The counter vertex −iΠ0 for each bubble diagram is understood implicitly.

The q integration in the second line becomes finite at d = 4 and does not produce singular loga-
rithmic terms. So we concentrate on the q integration in the last line, which can be evaluated in the
dimensional regularization as

1 +
g2

Ep−k2 + Ep+k2 +
εk
2

∫
dq

(2π)d

1
2εq + Ep−k2 + Ep+k2 +

εk
2

= 1 +
ε

2
Γ

(
1 −

d
2

) Ep−k2 + Ep+k2 +
εk
2

2φ0

−
ε
2

=
ε

2
ln

Ep−k2 + Ep+k2 +
εk
2

2φ0

 + O(ε2).

(A.4)

Then Vn in Eq. (A.2) to the order εn becomes

Vn = −
g2

4

∫
dkdp

(2π)2d

(Ep−k2 − εp−k2 )(Ep+k2 − εp+k2 )

Ep−k2 Ep+k2
(
Ep−k2 + Ep+k2 +

εk
2

)  ε2 ln

Ep−k2 + Ep+k2 +
εk
2

2φ0

 + regular terms

n−1

= −
g2

4

∫
dpdq

(2π)2d

(Ep − εp)(Eq − εq)

EpEq
(
Ep + Eq +

εp−q
2

)  ε2 ln
Ep + Eq +

εp−q
2

2φ0

 + regular terms
n−1

. (A.5)

By picking up the logarithmic terms, we find the p integration from its large momentum region
εp � εq and εp � φ0 gives the following contribution to the effective potential,

Vn ∼ ε

∫
dp

(2π)d

(
1
εp

)3 (
ε

2
ln εp

)n−1

∼

(
ε

2

)n ∫
dεp

(
1
εp

)2 (
ln εp

)n−1

∼

(
ε

2

)n
Γ(n),

(A.6)
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which grows as a factorial of n. Note that this n! contribution comes from the single diagram depicted
in Fig. A.1. At the moment, it is not clear whether such a n! contribution survives at O(εn) of the
effective potential and dominates the large order behavior of the ε expansion. Possibly there might be
cancellations with other n-th order diagrams and/or with subleading contributions from lower-order
diagrams.
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