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We here show some useful formulae.

DIFFERENTIAL OPERATORS ON CURVILINEAR COORDINATES
New, consider an orthogonal curvilinear coordinate described as

A= Aiei, e;, = (1)
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In general curvilinear coordinate systems, the Laplace operator reads

where 2% — ¥, a,v = 1,2,..., D, x® and &” denote the Euclidean and a general curvilinear coordinates, respectively,
and
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g = det(gwj), dz® = Oa® d82 = dx%dz® = guydgudgu' (5)
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GAUSS-LEGENDRE MULTIPLICATION FORMULA

The gamma function I'(z) satisfies the Gauss-Legendre multiplication formula:
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BESSEL FUNCTIONS

Several types of equations can be reduced to the Bessel equations. The solution of the equation
2?y" + (1 - 2a)zy’ + [(bea®)® +a® — a?ly =0 (7)
is given by y = x*J,(bz¢). As a corollary, y = €**J,(be“*) is the solution of
y" —2ay’ + [(bee™)? + a® — a*c*] y = 0. (8)

Now, consider y = Jo(f(x)). Then, y satisfies (' = %)
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By substituting f(z) = be®, we find that y = J,(be*) is the solution of the equation
y/l 4 02 [erQCw _ CY2:| Y= 0.

Also, y = g(x)J,(bx) satisfies

2(a")2 — gg” ’
x2y”+( 2g)y/+[(b2+(g)7299)x2—g—x—a2]y=0.
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By setting g(z) = e**, we see that y = e**J,(bx) is the solution of the equation
z2y" + ( 2ax2) y + [(a2 + b2) x? —ax — 042} y=0.
One can also show that y = [h(2)]” J,(h(z)) satisfies
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Solve the following equations:

vy’ +y' +y=0, 2y’ —y' +ay =0,y +ay=0, y" +e*y =0,
oy’ + (x+ 1Dy + (x+1/2)y =0, 3y’ +tanzy + cos® xy = 0, y" + NaP %y = 0.
The solution of the following equation
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is given by y = x"/2.J,, (2\z1/?).
Asymptotic expansion for large order is given by

Ju(z) ~ \/2177—V (g)y, vV — 0.
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Let us consider integral of triple products of Bessel functions. Let A = s(s —a)(s —b)(s —¢) and s = (a +b+¢)/2.

If Rev > —1/2, then we have
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Consider the Taylor’s expansion of (z + h)~*/2J,(v/z + h) with respect to h:

(2 + h)fu/ZJV( /7 + h) = Z h_md_mzfu/ZJV(\/E) _ i H;fnﬂz*(eru)/QJme(\/g).
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Similarly, when |h| < |z|, we have the expansion

(z+h)PL(Vz+h) =) ’;: j; v12],(Vz) = Z (hinﬁz(”—m)/%fm(ﬁ)
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Setting v = —1/2 and v = 1/2 and making some variable replacements in the above equations, we obtain
—cosx/ 2 — 2zt Z— m—1/2(2 —sm\/z2+2,z Z—Jl/Q m(
The latter is valid as long as 2|t| < |z|. Also, with the substitution z — 2% and h — kz?, we have

J(VTTF2) = 1+w22 CR ), 2)
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By putting v1 + k& = A, we have

(=A™ (z/2)"

J(Az) =" ~ Jyim(2). (22)
n=0
This is called the multiplicaton theorem.
Now, define the functions O,,(t),n =0, 1,... as
Oolt) =5, (1) =~0h(t),  Onialt) = Oua(t) — 204(0). (23)
For Ret > 0, O,(t) can be expressed as
On(t)%/oooet“{<u+ u2+1)n+(u7 u2+1)n}du. (24)

The generating function is given by (check this by calculating the r.h.s directly or showing that the r.h.s is solely a
function of ¢t — z)
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= Jo(2)00(t) + 2 _ Ju(2)On(t). (25)

If f(#) is holomorphic in |z| < R, then we have the expansion

= 1
f(z) =codo(2) 42 endn(2), cn = 5— )0y (t)dt (26)
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In particular, we have
dmidm(2) = Jo(2) / In(®)06(B)dt+2 3 Ju(2) / T (£)On (£)d. (27)
[t|=R n—1 [t|=R
BLOCK MATRICES
A block matrix can be decomposed as
A B\ (A-BD'C B 1 0 (28)
C D) 0 D D7'C 1)
Thus, we have
A B\ 1
det < cD > =det(AD — BD~'CD). (29)
Inverse of a block matrix can be written as
A B\ ' (A—BD-'C)"!  —(A—BD-'C)~'BD"! (30)
C D ~\ -D'C(A-BDt0)™! (D—-CA'B)~! '

In particular, we have
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