Polar representation of a matrix

Takehito Yokoyama

Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan (Dated: April 24, 2012)

Lemma. For any non-negative definite hermitian matrix H, there exists a hermitian matrix X which satisfies $H = \exp(X)$ and vice versa.

Proof. For $Hx_i = a_ix_i$, let $b_i = \log a_i$ where $a_i, b_i \in \mathbb{R}$. Then, define X as $Xx_i = b_ix_i$.

Theorem. Any non-singular matrix A can be represented as the product of an non-negative definite hermitian H with a unitary matrix U uniquely.

Proof. Let $H^2 = AA^{\dagger}$. Then, H is non-negative definite hermitian. For $H^2 = \exp(X)$, one may write $H = \exp(X/2)$. Now, we have $UU^{\dagger} = H^{-1}AA^{\dagger}H^{-1} = H^{-1}H^2H^{-1} = 1$. Therefore, we have the representation of A with the non-negative definite hermitian H and the unitary matrix U as

$$A = HU. \tag{1}$$

Note. If A is a normal matrix $([A, A^{\dagger}] \neq 0)$, we can also prove this as follows. For a unitary matrix U, one has

A

$$U^{\dagger}AU = \begin{pmatrix} \alpha_1 & & \\ & \alpha_2 & \\ & & \dots \end{pmatrix} = \operatorname{diag}(\alpha_i).$$
⁽²⁾

Now, decompose α_i as $\alpha_i = r_i e^{i\theta_i}$ where $r_i \ge 0$ and $\theta_i \in \mathbb{R}$. Then, one obtains $\operatorname{diag}(\alpha_i) = \operatorname{diag}(r_i)\operatorname{diag}(e^{i\theta_i})$, and hence $A = U\operatorname{diag}(r_i)U^{\dagger}U\operatorname{diag}(e^{i\theta_i})U^{\dagger}$. It is easy to show that $U\operatorname{diag}(r_i)U^{\dagger}$ and $U\operatorname{diag}(e^{i\theta_i})U^{\dagger}$ are non-negative definite hermitian and unitary, respectively.