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Chapter 1

Introduction

1.1 Superconductor —history and classifica-

tion

In 1957, Bardeen, Cooper and Schrieffer (BCS) completed the microscopic
theory of the superconductivity.[1] According to their theory, the phonon-
mediated electron-electron interaction leads to the formation of Cooper pair
below the transition temperature. Since this interaction is isotropic, the
pairing state is also isotropic s-wave symmetry and spin-singlet. This the-
ory successfully explains the energy gap in the density of states. The kind
of superconductors described by the BCS theory are dubbed conventional
superconductors.

A new paradigm has come in 1986, the discovery of the cuprate high-
temperature superconductors.[2] Remarkably, these superconductors have a
high transition temperature which can exceed even 100 K. The discovery
of high-temperature superconductivity in the cuprates caused a flurry of
activity in various subfields of condensed-matter research, stimulating not
only studies of the basic mechanisms leading to this phenomenon, but also a
widespread search for new technological applications. An essential difference
of the cuprates from conventional superconductors is the symmetry of the
Cooper pairs: they have unconventional d-wave symmetry. In addition to
the cuprates, exotic superconductors have been discovered to this date, such
as heavy-fermion and organic superconductors, and Sr2RuO4. For many of
these superconductors, the pairing symmetry is no longer s-wave and they
are known to have unconventional superconductivity.

Sr2RuO4 discovered in 1994 [3] is believed to have chiral p-wave pair-
ing. It has a layered perovskite structure common to ruthenate and cuprate
superconductors as shown in Fig. 1.1. Let us introduce d-vector, a useful
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Figure 1.1: Crystal structure of Sr2RuO4.

representation of pair potential. Below,ˆmeans 2× 2 matrices in spin space.
Pair potential has the form in general:

∆̂(k) =i [∆kσ̂0 + dk · σ̂] σ̂2 (1.1)

where σ̂j (j=0, 1, 2, 3) are Pauli matrices. For spin-singlet pairing, ∆k is
nonzero and dk is zero. For spin-triplet pairing like Sr2RuO4, dk is nonzero
while ∆k becomes zero. In this way, dk features the pair potential in triplet
superconductors where the spin of Cooper pair is perpendicular to dk. To
unveil the d-vector of Sr2RuO4, NMR Knight shift[4](see Fig. 1.2), µSR[5]
or other experiments[6] have been performed As a result, it is now believed
that the d-vector of Sr2RuO4 is given by

d = z∆0

(
k̄x ± ik̄y

)
, k̄j =

kj

kF

. (1.2)

This pairing is called chiral p-wave pairing due to the chirality of the d-vector.
Now, for a general classification of the unconventional superconductors,

we will discuss the symmetry in the superconducting states. According to
the Landau theory, the symmetry breaking is often accompanied with a
phase transition, which means when the system undergoes a phase tran-
sition, some symmetries possessed by the system before can be lost. For the
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Figure 1.2: Knight shift data of Sr2RuO4 which supports triplet pairing [4].

Figure 1.3: Sketch of d-vector in Sr2RuO4.[6]
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second-order phase transition, the symmetry breaking across the transition
is continuous and thus the symmetry group after the breaking becomes a
subgroup of the full symmetry group. The full symmetry group G is given by
G = G×R×U(1)×T where G is the point group symmetry of the crystal lat-
tice, R is the symmetry of spin rotation, U(1) is the one-dimensional global
gauge symmetry, and T is the time-reversal symmetry. Consider symmetry
group G1 which is reduced to symmetry group G2 (G2 ⊂ G1) by a symmetry
breaking. Then, quotient space G1/G2 represents the order paremeter space.
The U(1) symmetry is broken spontaneously by the phase coherence in the
superconducting state. Hence, in a superconducting transition, we have G1

= G×R×U(1)× T and G2 = G×R×T and therefore the order paremeter
space is G1/G2=U(1). In a conventional superconductor, symmetries other
than U(1) are kept, but more detailed symmetry classification is required
in general. By determining the symmetry properties of the order parame-
ter besides U(1), we can classify the unconventional superconductors in a
transparent manner.

A simple classification of the superconductors can be made based on the
parity of the pairing state in space. Since in the superconducting state, the
electrons form the Cooper pairs whose total spin S is an integer. Therefore,
we have the spin-singlet (S = 0) with even parity or the spin-triplet (S = 1)
with odd parity. When S is fixed, the total orbital angular momentum L of
the Cooper pair is determined according to the Fermi statistics. For spin-
singlet, L should be an even integer, while for spin-triplet, L should be an
odd integer. In conventional superconductors, both S and L are zero and the
pairing is known as s-wave in analogy to atomic orbitals. It is believed that
the pairing in the high-Tc cuprate has d-wave symmetry (S = 0 and L = 2),
and Sr2RuO4 favors the p-wave symmetry (S = 1 and L = 1).

In addition to the above-mentioned superconductors, disordered super-
conductors are also of great interest for theoretical reasons, because they
represent new symmetry classes in disordered non-interacting fermion prob-
lems that are not realized in metals.[7] The study of symmetry classes in
disordered or chaotic systems dates back to 1962. In 1962, following the
early work of Wigner[8], Dyson classified complex many-body systems such
as atomic nuclei according to their fundamental symmetries.[9] Arguing on
mathematical grounds, he proposed the existence of three symmetry classes,
which are distinguished by their behavior under reversal of the time direction
and by their spin. The statistical properties of these classes are described by
three random-matrix models, called the Gaussian orthogonal, unitary, and
symplectic ensembles. The Wigner-Dyson statistics of disordered or chaotic
single-particle systems applies to the ergodic limit, i.e., to times long enough
for the degrees of freedom to equilibrate and fill the available phase space
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uniformly. More specifically, in the context of disordered mesoscopic sys-
tems, the ergodic limit is reached for times larger than the diffusion time
L2/D, where D is the diffusion constant and L the linear extension of the
system. By the uncertainty relation, the ergodic limit corresponds to the
energy range below the Thouless energy D/L2.

However, the symmetry classes in Wigner-Dyson statistics do not exhaust
the number of possible universality classes in disordered single-particle sys-
tems; new universality classes are found out in dirty superconductors. In
dirty superconductors, the momentum k of a single particle is no longer a
good quantum number. The plain-wave eigenfunctions with momentum k
should be replaced by position-dependent functions and pairing is between
time-reversed states. To find these functions, one needs to set up equations
for them. This is achieved by generalizing the Hartree-Fock equations to
include the pairing potential of the superconducting state. The resulting
equations are called Bogoliubov-de Gennes (BdG) equations. These equa-
tions are widely applied to more general situations with order parameter
varying in space (such as the normal metal/superconductor junction or vor-
tex state). Since the elementary excitation (quasiparticle) of superconductors
can be viewed as destroying a Cooper pair from the condensate and creating
an electron in the vacancy, the BdG equations are often used to describe
the bahavior of the quasiparticles in the superconductors. At the same time,
the properties of the dirty superconductor and its classification will be de-
termined by the BdG equations, where pairing symmetry is reflected. A
classification of the symmetry classes in dirty superconductors have been ad-
vanced recently. Depending on the existence (or the lack) of time reversal and
spin rotation symmetries, dirty superconductors can be classified into four
symmetry classes, CI, DIII, C, and D in Cartan’s classification scheme (Table
1.1). Hence, the situation is different from the Wigner-Dyson scenario[8, 9]
where only three distinct classes -the Gaussian orthogonal, unitary, and sym-
plectic ensembles- exist. These classes are believed to complete the possible
universality classes in disordered single-particle systems.

Table 1.1: Symmetry classes of dirty superconductors.[7]

Class Time reversal Spin rotation Symmetric space
D No No SO(4N)
C No Yes Sp(2N)

DIII Yes No SO(4N)/U(2N)
CI Yes Yes Sp(2N)/U(N)
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The interplay of superconductivity and disorder has also triggered an in-
teresting subject of superconductor-insulator transition. Disorder is expected
to enhance the electrical resistance of a system, while superconductivity leads
to a zero-resistance state. Although superconductivity has been predicted to
persist even in the presence of disorder,[10] experiments performed on thin
films have demonstrated a transition from a superconducting to an insulating
state with increasing disorder or magnetic field.[11] However, the mechanism
of this transition is still under debate.[12]

By now, we have discussed superconductors where symmetries other than
U(1) are kept. Other kinds of superconductors with multiple broken symmery
(U(1) plus other symmetries) also show rich physics. Let us first consider
Cooper pairs with a nonzero total momentum, where translational symmetry
is broken. This situation arises when we turn on the magnetic field H and
split the Fermi surfaces of the spin-up and -down electrons apart, which leads
to a finite center of mass momentum. In this case, we have the BCS state,
the spin polarized state (normal state), and possibly more states to compete
for the ground state. When the magnetic field H is strong (weak) enough,
the spin polarized (BCS) state will be favored. In the intermediate region of
H, it is suggested by Fulde and Ferrell,[13] and Larkin and Ovchinnikov[14]
that pairing electrons of opposite spins located close to their own Fermi sur-
faces may lower the energy (see Fig.1.4). Since the paired electrons have
different momenta, there will be a net momentum in the Cooper pair and it
causes the oscillation of the order parameter. This state is now known as the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. It breaks both translational
and rotational symmetries. Though the FFLO state was studied theoreti-
cally in an earlier time, lack of experimental support in the conventional
superconductors has made it overlooked for a long time. The situation has
been changed by experimental results suggestive of the FFLO state in heavy
fermions, quasi-1D organic, or high-Tc superconductors.[15] Recent experi-
mental results in CeCoIn5, a quasi-2D d-wave superconductor, are particu-
larly encouraging. This subject is also of interest to the nuclear and particle
physics communities because of the possible realization of the FFLO state in
high density quark matter and nuclear matter, as well as in cold fermionic
atom systems.[16] On the theoretical side, more suggestions dealing with the
pairing between unbalanced fermions are also proposed, such as the deformed
Fermi surface pairing and the breached pairing states. To classify and dis-
cuss the relation between these different phases, more classification schemes
beyond the Landau theory are necessary and this will serve to enhance our
understanding of the quantum phases and the phase transitions.[17]

Besides the FFLO states, there are other types of intriguing supercon-
ductors with multiple broken symmery, like ferromangnetic superconductors
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Figure 1.4: Schematic of the formation of FFLO state. The Cooper pairs in

the FFLO state have a finite center of mass momentum.

Figure 1.5: Crystal structure of CePt3Si.[25]
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or noncentrosymmetric superconductors, which have received a tremendous
interest. Magnetism and superconductivity have long been under intensive
pursuit in the field of low temperature physics. After the advent of the BCS
theory, it became clear that superconductivity in the singlet state could also
be destroyed by an exchange field. The exchange field, in a magnetically or-
dered state, tends to align spins of Cooper pairs in the same direction, thus
preventing a pairing effect. This is the so-called paramagnetic effect which
demonstrates that ferromagnetic ordering is unlikely to appear in the super-
conducting phase. In such a situation the energy for ferromagnetic ordering
decreases and, instead of ferromagnetic order, nonuniform magnetic ordering
should appear. Anderson and Suhl called this state cryptoferromagnetic.[18]

Meanwhile, superconductivity and antiferromagnetism can coexist quite
peacefully because, on average, the exchange and orbital fields are zero at
distances of the order of the Cooper pair size or superconducting coherence
length. Actually experimental evidences of magnetism and superconductiv-
ity coexisting in some ternary rare-earth compounds were reported. [19]
However, the interplay of ferromagnetism and superconductivity, albeit an-
tagonistic orders, has recently attracted much attention because nontrivial
phenomena are predicted or found experimentally. Such phenomena are ex-
pected to occur in ferromagnet/superconductor junctions[20, 21] and also in
ferromangetic superconductors. Ferromagnetic superconductors are likely to
have triplet pairings since triplet pairings and ferromagnetims can coexist.
Up to now, several bulk materials, e.g., UGe2[22], ZrZn2[23] and URhGe[24],
are identified as ferromagnetic superconductors.

Recent discovery of heavy fermion superconductor CePt3Si has also opened
up a new field of the study of superconductivity. [25] This is because this
material does not have inversion center (see Fig.1.5). After this discovery,
other novel heavy fermion superconductors without inversion symmetry such
as UIr, CeRhSi3, and CeIrSi3 have been discovered.[26, 27, 28] Also, in
non-f-electron systems, new noncentrosymmetric superconductors such as
Cd2Re2O7, Li2Pd3B, and Li2Pt3B have been discovered.[29, 30, 31, 32] Be-
cause of the broken inversion symmetry, Rashba type spin-orbit coupling is
induced,[33, 34] and hence different parities, spin-singlet even-parity pairing
and spin-triplet odd-parity pairing, can be mixed in superconducting state.
[35] From a lot of experimental and theoretical studies, it is believed that
the most possible candidate of superconducting state in CePt3Si is s+p-wave
pairing. In general, d+f-wave pairing or other mixtures are allowed in non-
centrosymmetric superconductors depending on material parameters. [36]

All the superconductors mentioned above are even-frequency supercon-
ductors. Recently, there has been a growing attention to the so-called odd-
frequency pairing, which means that the Cooper pair wavefunction is sym-
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metric under exchange of spatial- and spin-coordinates, but antisymmetric
under exchange of time-coordinates (see Table 1.2 for a general classfication
of superconductors). This exotic state had been theoretically proposed to
exist by Berezinskii a few decades earlier in the context of liquid 3He.[37]
Recently, the presence of odd-frequency pairing was predicted in ferromag-
net/conventional superconductor junctions due to the breakdown of sym-
metry in spin space.[21] Consequently, strong experimental evidence of the
existence of odd-frequency pairing has been reported. [38, 39] Motivated
by this, it is found that odd-frequency pairing exists near the interface in
normal metal/superconductor junctions due to the violation of translational
symmetry. [40] Hence, we see that symmetry breaking more than U(1) is an
important ingredient for the presence of odd-frequency pairing.

Table 1.2: Symmetry classfications of superconductors. Generally, supercon-
ductors are classified into four classes.

Spin Orbit Matsubara frequency
Singlet Even Even
Triplet Odd Even
Singlet Odd Odd
Triplet Even Odd

The study of multiple symmetry breaking systems may be related to the
emerging field of complexity in strongly correlated electronic systems. [41] A
wide variety of recent intensive studies have convincingly demonstrated that
several transition metal oxides and other materials have dominant states that
are not spatially homogeneous. This occurs in cases in which several phys-
ical interactions –spin, charge, lattice, and/or orbital– are simultaneously
active. This phenomenon causes interesting effects, such as colossal magne-
toresistance, and it also appears crucial to understand the high-temperature
superconductors.

1.2 Mesoscopic superconductivity

The field of mesoscopic physics has started from the study of phase coherent
effects at low temperatures.[42] In the last twenty years, remarkable tech-
nological improvements allowed to fabricate structures of mesoscopic size in
a controllable way. At present, a variety of mesoscopic systems like single
electron transistors, quantum wires, quantum dots, quantum Hall systems,
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normal metal-superconductor-ferromagnet hybrid structures, magnetic mul-
tilayer systems, charge density waves, carbon nanotubes, graphene, small
metallic nanoparticles and nanomechanical systems, are being intensively
investigated both experimentally and theoretically. [43] In the past, experi-
mental studies of quantum phenomena were limited to natural systems such
atoms and molecules. An important advantage of the artificial systems com-
pared to the natural systems is that their transport properties can be mea-
sured in a more controllable way. The field of the mesoscopic physics has
now been matured, profoundly overlaping with other fields, e.g., supercon-
ductivity, magnetism,[44, 45] random matrix theory[46] or quantum chaos.
[47] The field of the mesoscopic physics in superconducting systems is called
mesoscopic superconductivity. Mesoscopic effects show up in the transport
properties of mesoscopic devices, e.g. current or noise. A marked example
seen in superconducting systems is the Andreev reflection (AR).[48]

In normal metal / supercunductor junctions, AR is one of the most impor-
tant process for low energy transport. The AR is a process that an injected
electron is converted into a reflectd hole at the interface. Therefore, the AR
can double the conductance. We show schematic illustration of the AR in
Fig. 1.6. Taking the AR into account, Blonder, Tinkham and Klapwijk pro-
posed the formula for the calculation of the tunneling conductance[49]. This
method makes it possible to clarify the energy gap profile of superconductors.

Normal metal Superconductor
electron

hole

Cooper pair
Fermi energy

∆ Energy gap

Normal metal Superconductor
electron

hole

Cooper pair
Fermi energy

∆ Energy gap

Figure 1.6: Schematic of Andreev reflection.
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1.2.1 Proximity effect

Proximity effect in conventional superconductor junctions

Proximity effect is defined as a phenomenon that Cooper pairs penetrate
into normal metal from superconductor (see Fig. 1.7). Here, the coherence
length is given by

√
D/2πT with difussion constants D and temperature

T . Proximity effect influences crucially junction properties, e.g. density of
states in the normal metal or junction conductance. Due to the penetration
of the Cooper pairs, the density of states in the normal metal is strongly
modified and mimics that in the supercunductor[50] as shown in Fig. 1.8. To
elucidate how the proximity effect influences the charge transport, in 1991,
Kastalsky et al. measured conductance in normal metal/supercunductor
(InGaAs/Nb) junctions[51]. As seen in Fig. 1.9, they found a zero bias
conductance peak (ZBCP) due to the proximity effect in the junctions. This
is understood, as illustrated in Fig. 1.10, by interference effect of electrons
and holes. Consider at point a, where an electron is Andreev or normally
reflected. Normally reflected electron is again Andreev or normally reflected
at point b. Then, Andreev reflected electron can come back along the same
path due to the retroreflectivity. In this way, two holes interfere with each
other, which results in the enhancement of Andreev reflection probability. At
zero bias voltage, retroreflectivity is complete and hence ZBCP appears.[52,
53] This was confirmed by quasiclassical Green’s fucntion method by Volkov
et al. [54] Proximity effect is a basic concept widely used to interpret physical
phenomena in superconducting junctions.

����������� ��!��"#$"� #$ %&'
(
)* + ,

-& .
Figure 1.7: Schematic of proximity effect. F is anomalous Green’s function.
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Figure 1.8: Schematic of the mini gap. The density of states (DOS) in the

normal metal mimics that in the supercunductor. The character-
istic energy in the gap-like structure is called minigap(Eg).

Figure 1.9: Conductance in InGaAs/Nb junction[51].
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Figure 1.10: Schematic of the interference which leads to ZBCP.

Figure 1.11: Sketch of the penetration of Cooper pairs. ξ,D, T and H de-
note the coherence length, diffusion constant, temperature, and
exchange field, respectively. Also, N, F and S denote normal
metal, ferromagnet and supreconductor, respectively. The mid-
dle (lower) panel shows the penetration of single (triplet) Cooper
pairs.
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Figure 1.12: Exponentially damped oscillations of the real part of the super-
conducting order parameter induced into a ferromagnetic ma-
terial by proximity effect. The space coordinate x denotes the
distance from the superconductor/ferromagnet interface. The
period of the oscillations is set by the coherence length ξF . 0
state and π state correspond to positive and negative signs of
the real part of the order parameter, respectively. Inset: super-
conducting density of states at zero temperature in the 0 and π
states for an exchange energy much larger than the energy gap.
[57]
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Figure 1.13: (a) Critical current Ic as a function of temperature for
Nb/CuNi/Nb junctions with different ferromagnet-layer thick-
nesses between 23 and 27 nm as indicated. (b) Model calcula-
tions of the temperature dependence of the critical current in a
supreconductor/ferromagnet/supreconductor junction.[58]

15



In ferromagnet/supreconductor junctions, the proximity effect is qualita-
tively changed. Due to the presence of the exchange field, the induced Cooper
pairs in the ferromagnet have nonzero center of mass momentum, similar to
the FFLO state. Also, since triplet pairings can survive the exchange field,
they can penetrate deeply into the ferromagnet compared to the singlet pair-
ings. This triggered the study of long range proximity effect.[21, 55, 56] See
the sketch of the penetration of Cooper pairs in Fig. 1.11. The oscillations
of the condensate function (anomalous Green’s function) in the ferromagnet
due to the nonzero center of mass momentum lead to interesting peculiarities.
The sign-changed state of the condensate function due to the oscillations is
found to make a qualitative change in the density of states in the ferromag-
net, as confirmed expermentally in PdNi/Nb junctions (see Fig. 1.12). [57]
The Josephson current in supreconductor/ferromagnet/supreconductor junc-
tions also shows oscillatory behavior as a function of the temperature[58] as
shown in Fig. 1.13.

Proximity effect in unconventional superconductor junctions

Proximity effect in unconventional superconductor junctions is quite differ-
ent from that in conventional superconductor junctions. It is clarified that
the mid gap Andreev resonant state (MARS) formed at the interface[59]
competes with the proximity effect in d-wave junctions [60] while MARS en-
hances it in p-wave junctions[61]. This plays a pivotal role on the junction
properties. Let us discuss this effect in more detail.

Figure 1.14 shows the local density of states ρ(ε) in the diffusive normal
metal (DN) of DN/px-wave superconductor junctions. As is seen, a zero
energy peak appears which is stronger near the DN/px-wave superconductor
interface.

On the other hand, in DN/d-wave superconductor junctions, we will see
different characteristics. We have chosen d-wave superconductor with ∆± =
∆0 cos[2(θ ∓ α)]. For α = 0, MARS is absent and proximity effect becomes
conventional one. In this case, ρ(ε) at x = −L/4 has a gap like structure
(curve a in the left panel of Fig. 1.15). Although ρ(ε) at x = −L/4 has
a broad peak like structure for α = π/8, ρ(0) ≤ 1 is satisfied contrary to
the DN/px-wave superconductor junction. For α = π/4, due to the absence
of the proximity effect, ρ(ε) = 1 for any case. Thus, we can conclude that
line shapes of ρ(ε) in DN region of DN/px-wave superconductor junctions are
significantly different from those of DN/d-wave superconductor junctions.

Most striking feature is seen in the resistance R. The zero-voltage resis-
tance as a function of Rd/Rb (Rd and Rb are resistances of the DN and the
barrier at the DN/p-wave inteface, respectively) is depicted in Fig. 1.16 for
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Figure 1.14: Normalized local density of states ρ(ε) in the DN of DN/px-wave
superconductor junctions for (a)x = −L/4; (b)x = −L/2; and
(c)x = −L.[61] DN/px-wave superconductor interface is located
at x = 0 while the other end of DN is located at x = −L.

the DN/p-wave superconductor junctions with the py-wave and the px-wave
cases (curves a and b of Fig. 1.16). For the py-wave case, R increases lin-
early as a function of Rd, where no proximity effect appears (curve a of Fig.
1.16). For the px-wave case, R is independent of Rd (curve b of Fig. 1.16).
This anomalous R dependence is a most striking feature by the enhanced
proximity effect by the MARS. The corresponding result for the DN/s-wave
superdoncutor junctions (curve c) and DN/dxy-wave superdoncutor junctions
(curve d) is also plotted as a reference. For s-wave case, it is well known that
R has a reentrant behavior ∂R/∂Rd |Rd=0< 0 as shown in curve c of Fig.
1.16. In p-wave cases, this reentrant behavior of R does not appear. For
dxy-wave case, due to the formation of the MARS as in the case of px-wave
junction, R at Rd = 0 is identical to that for px-wave junction (curve b of
Fig. 1.16). However, for nonzero Rd, R/Rb increases linearly with Rd/Rb

due to the absence of the proximity effect.
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Figure 1.15: Normalized local density of states ρ(ε) in DN for DN/d-wave
superconductor junction. We have chosen d-wave superconduc-
tor with ∆± = ∆0 cos[2(θ ∓ α)]. α = 0 (left panel), α = π/8
(middle panel), and α = π/4 (right panel). a, x = −L/4; b,
x = −L/2; and c, x = −L.[61] DN/d-wave superconductor in-
terface is located at x = 0 while the other end of DN is located
at x = −L.

0 1 2
0

1

2

3

Rd

R
/R

b

aa

c

d

b

/Rb

Figure 1.16: Total zero voltage resistance of the junctions R is plotted as a
function of Rd/Rb with a, py-wave; and b, px-wave. The curves
c and d represent the dependence for the DN/s-wave supercon-
ductor junctions and DN/dxy-wave superconductor junctions,
respectively.[61]
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1.2.2 Josephson effect

The macroscopic phase coherence in superconducting state also manifests
itself in Josephson effect. In 1962, Josephson published his celebrated paper
and concluded the followings[62]

1. current flows between superconductors with different phases ϕL and ϕR

at zero voltage, depending on the phase difference ϕ0 = ϕL − ϕR (dc
Josephson effect).

2. when applying a bias voltage V , alternating current flows with fre-
quency proportional to V (ac Josephson effect).

Fundamental equations for Josephson effect are

J = JC sinϕ, (1.3)

ϕ = ϕ0 +
2e

~

∫ t

0

V dt. (1.4)

Especially, when V = const. we obtain

J = JC sin

[(
2eV

~

)
t+ ϕ0

]
. (1.5)

After the discovery of the Josephson effect, it has been under intensive investi-
gation. General properties of Josephson current clarified can be summarized
as follows:[63]

(1) A change of phase of the order parameter of 2π in any of the electrodes
is not accompanied by a change in their physical state. Consequently, this
change must not influence the supercurrent across a junction, which should
be a 2π periodic function, J(ϕ) = J(ϕ+ 2π).

(2) Changing the direction of a supercurrent flow across the junction
must cause a change of the sign of the phase difference; therefore J(ϕ) =
−J(−ϕ). Note that this is violated in superconductors with broken time-
reversal symmetry, leading to spontaneous currents.

(3) A dc supercurrent can flow only if there is a gradient of the order-
parameter phase. Hence, in the absence of phase difference, ϕ = 0 , there
should be zero supercurrent, J(2πn) = 0, n = 0,±1,±2, .....

(4) It follows from (1) and (2) that the supercurrent should also be zero
at ϕ = nπ, J(πn) = 0, n = 0,±1,±2, .....

As follows from Eqs. (1)-(4), J(ϕ) can in general be decomposed into a
Fourier series

J(ϕ) =
∑

n≥1

{In sin(nϕ) + Jn cos(nϕ)} (1.6)
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where In and Jn are coefficients to be determined. The Jn vanish if time-
reversal symmetry is not broken.

1.3 Vortex

Superconductors under magnetic fields show the so-called Meissner effect,
that is, the magnetic fields applied to superconducting material are expelled
from the inside of the material. Some superconductors, called type I exhibit
a perfect Meissner effect up to a critical field Hc, and at this critical field
the transition to the normal state takes place. In the other superconductors,
called type II, magnetic fields are excluded up to a lower critical field Hc1,
and at an upper critical field Hc2 the superconductivity is broken. In the
intermediate field region Hc1 < H < Hc2, the magnetic field partly pene-
trates into the material keeping the superconductivity. The magnetic fields
penetrate into the superconductors in the form of quantized flux lines which
have a topological nature, classified according to one demensional homotopy
group π1 in the order parameter space. These two types of superconduc-
tors are characterized by the Ginzburg-Landau parameter κ which is defined
by the ratio of the panetration depth and the coherence length. Namely, if
κ < (>)1/

√
2, the superconductor is type-I(II). The quantized flux lines show

characteristic phenomena in type-II superconductors, and a system consti-
tuted of such flux lines has a variety of physical aspects. Around the flux
line, the supercurrent circularly flows and the order parameter of supercon-
ductivity varies by 2πn in its phase (n is an integer). The structure of such
a flux line is called vortex, and the superconducting state at Hc1 < H < Hc2

is called vortex state.
Because superconducting gap ∆ has a spatial dependence in the vortex

state, it is expected that some kind of the quantum well is formed and the
quantized energy levels due to the well will appear in the well (see Fig.
1.17). Around a vortex, the phase of the order parameter ∆ varies by 2π
with a rotation about the vortex center when one quantum flux penetrates
there. Taking the z-axis in the direction of the flux line with cylindrical
coordinates r = (r, θ, z), the order parameter ∆ around a vortex is expressed
as ∆(r) = |∆(r)| exp(iθ). Because of the indeterminacy of the phase factor
exp(iθ) at the vortex center r = 0, the magnitude of the gap becomes zero
inevitably. Thus, the gap ∆(r) is ∆(0) = 0 at the vortex center, and far
from the vortex it recovers to the uniform value ∆. This spatial structure of
the energy gap gives rise to low-energy bound states below the gap around
a vortex as in the quantum well systems.

The existence of the low-energy bound states around a vortex was first
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Figure 1.17: Schematic of Andreev bound states.

Figure 1.18: dI/dV vs V for NbSe2, taken at three positions: on a vortex
(top curve), about 75 Å from a vortex (middle), and 2000 Å
from a vortex (bottom). The zero of each successive curve is
shifted up by one quarter of the vertical scale.[65]
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discussed from a microscopic model in 1964 by Caroli, de Gennes, and
Matricon[64]. Energy spectra in spatially inhomogeneous superconductors
can be obtained as the eigenenergy spectra of the Bogoliubov-de Gennes
(BdG) equation. The BdG equation corresponds to the Schrödinger equa-
tion for superconducting systems. Caroli et al. applied the BdG equation
to a vortex system and found low-energy excited states bounded around the
vortex.[64] These bound states due to vortices are dubbed Andreev bound
states. The Andreev bound states can play a pivotal role on the thermody-
namics and transport phenomena in superconductors under magnetic fields.
Theoretically, several theorists have studied the electronic structure around
vortices and its effects on physical phenomena. Experimentally, neverthe-
less, it had taken rather long time to study directly the electronic structure
around vortices.

In 1989, however, Hess et al. first succeeded in experimentally observing
the electronic structure around vortices[65]. They investigated the energy
spectra around vortices by the scanning tunneling microscope (STM). The
tunneling current I of the normal state/insulator/ superconductor junction
is given as

I(V ) ∝
∫ ∞

−∞

dEN(E) (f(E) − f(E + eV )) (1.7)

where N(E) is the density of states in the superconductor, V is the bias
voltage applied to the junction, and f(E) is the Fermi distribution function.
Differentiating this equation with respect to V , one obtains the differential
conductance,

dI

dV
∝ −

∫ ∞

−∞

dEN(E)
∂

∂V
f(E + eV ) ≈ N(−eV ). (1.8)

The derivative of the Fermi function becomes very sharply peaked at E =
−eV at low temperatures. This equation means that we can obtain the
density of states N(E) of the superconductor by measuring the differential
conductance dI/dV at suffciently low temperatures. The spatial resolved
probe, STM, enables us to measure dI/dV at each position on the surface
of the superconductor, so that we can obtain the local density of states
N(r, E) of the superconductor. In absence of vortices, or suffciently far from
a vortex, the BCS energy gap should appear in the energy spectra. Near
the vortex center, on the other hand, finite density of states was expected
to exist inside the gap, due to the above-mentioned low-energy bound states
around a vortex. Figure 1.18 displays the experimental results for the energy
spectra at the vortex center and at some distance from it, observed first
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with STM in 1989 by Hess et al. [65] The superconducting material used
in the experiment was a clean type-II superconductor, the layered hexagonal
compound 2H-NbSe2. It was remarkable that a large peak appeared in the
experimentally observed data at the zero bias voltage at the vortex center.
The BCS gap is certainly recovered far from the vortex center.

Stimulated by the STM experiments, theoretical studies also developed.
By solving the BdG equations numerically, it was clarified that the zero-
bias peak appeared at the vortex center and the peak split into two peaks
at positive and negative energies at some distance from the vortex center.
[66, 67]

Zero energy peak at the vortex core is known to be sensitive to impu-
rity scattering.[68, 69, 70] Figure 1.19 shows a local density of states of a
superconducting vortex core measured as a function of disorder in the alloy
system Nb1−xTaxSe2 using a low-temperature STM.[68] The peak observed
in the zero-bias conductance at a vortex center is found to be very sensitive
to disorder. As the mean free path is decreased by substitutional alloying,
the peak gradually disappears and for x = 0.2 the density of states in the vor-
tex center is found to be equal to that in the normal state. The vortex-core
spectra hence may provide a sensitive measure of the quasiparticle scattering
time.

Figure 1.19: Spectra of Nb1−xTaxSe2 taken at the core center for various Ta
substitution.[68]

Furthermore, STM is now considered as a usuful probe to detect the pair-
ing symmetry of superconductors because the structure of local density of

23



states around the core reflects the pairing symmetry. [71, 72] In fact, it is
found that local density of states in d-wave superconductor has a four fold
symmetry. See Figs. 1.20 and 1.21. This is consistent with some experi-
mental facts. Figure 1.22 depicts dI/dV of NbSe2 measured by STM[73].
Cleary, the anistropic structure is seen, which suggest that this material is
an anisotropic superconductor.

However, a discrepancy arises in d-wave superconductors. The conven-
tional theory for d-wave vortices based on Bogoliubov-de Gennes mean-field
theory predicts a zero-energy peak in the local density of states at the vortex
core[74]. However, spectrum obtained by STM in one of the high-Tc materi-
als, Bi2Sr2CaCu2O8+x, giving directly the local density of states around the
vortex core, shows only a small-double peak structure at energies ±7 meV[75]
(see Fig. 1.23). A similar situation was also observed in YBa2Cu3O7−x

compounds[76].

To resolve this discrepancy, several theoretical attempts have been made:
dx2−y2 + s state[77], dx2−y2 + idxy state[78, 79], antiferromagnetic vortex
core[80, 81, 82], staggered flux state[83], vortex core with small kFξ0[84, 85],
and vortex undergoing quantum zero-point motion in a d-wave superconductor[86].
Here, kF is the Fermi wave number and ξ0 is the coherence length. However,
the reason of this discrepancy is still controversial.

1.4 Nonequilibrium Green’s functions formal-

ism

Studies of the transport equation for electrons interacting with phonons by
means of diagrammatic techniques started in the early sixties by Konstantinov-
Perel[87] and Kadanoff-Baym[88] . In 1964, Keldysh applied his Green’s func-
tions technique to derive the kinetic equations for electrons interacting with
phonons in a rather elegant way[89]. Since then the so-called nonequilibrium
Keldysh Green’s functions method has been extensively used to describe
electronic transport phenomena, e.g. weak localization, electron-electron
interaction, and impurity scattering in metals[90, 91, 92], nonequilibrium
superconductivity[93, 94, 95, 96], as well as for derivation of kinetic equations
for 3He[97, 98], quasi-1D conductors with charge density waves[99, 100, 101],
and Langevin equations for a particle in dissipative environment [102, 103].
In particular for the case of superconductors, the diagrammatic Keldysh tech-
nique is not enough to properly account for the nonequilibrium properties
of the system and it must be supplemented by considering Green’s functions
not only as 2×2 matrices in time ordered space or Keldysh space, but also as
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Figure 1.20: Local density of states at different energies[71] Left panels shows
the results of d-wave superconductor. Right panels shows the
results of s-wave superconductor.
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Figure 1.21: Local density of states in d-wave superconductor at different
energies[72] Four fold symmetry is seen, which reflects d-wave
symmetry.
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Figure 1.22: dI/dV of NbSe2 measured by STM[73].

2×2 matrices in particle-hole space (also called Nambu space).[104, 105] The
Nambu representation allows to incorporate in a compact way the pair poten-
tial, essential to describe superconductivity, into the standard diagrammatics
used in the Keldysh technique.

1.4.1 Keldysh formalism

Keldysh method[89] is widely used to derive equation of motion in supercon-
ductors. In real time formalism, one can formulate nonequilibrium supercon-
ductng states. Now, we define

ψ (r, t) = exp (iHt)ψ (r) exp (−iHt) , (1.9)

ψ† (r, t) = exp (iHt)ψ† (r) exp (−iHt) , (1.10)

x = (r, t) , ψ (r) =
1√
V

∑

k

eikrc
k
, ψ† (r) =

1√
V

∑

k

e−ikrc†
k
, (1.11)
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Figure 1.23: dI/dV of Bi2Sr2CaCu2O8+x taken at different locations mea-
sured by STM[75]. The top two spectra, taken at the center of
a Zn impurity resonance (strong) and an impurity resonance of
unknown source (weak), respectively, show a peak in the DOS
just below the Fermi energy (∼ −1.5mV) The third spectrum,
taken on a ‘regular’ (free of impurity resonances and magnetic
vortices) part of the surface, shows a superconducting energy
gap with ∆ = 32 mV. The bottom spectrum, taken at the center
of a vortex core, shows two local maxima at 67 mV, as indicated
by the two solid arrows. In addition, both coherence peaks at
the gap edge are completely suppressed.
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and

Ĝ11(x1, x2) = −i
〈
T
(
ψ(x1)ψ†(x2)

)〉
(1.12)

=

{
−iψ(x1)ψ†(x2)(t1 > t2)
iψ†(x2)ψ(x1)(t1 < t2)

, (1.13)

Ĝ12(x1, x2) = i
〈
ψ†(x2)ψ(x1)

〉
, (1.14)

Ĝ21(x1, x2) = −i
〈
ψ(x1)ψ†(x2)

〉
, (1.15)

Ĝ22(x1, x2) = −i
〈
T̃
(
ψ(x1)ψ†(x2)

)〉
(1.16)

=

{
−iψ(x1)ψ†(x2)(t1 < t2)
iψ†(x2)ψ(x1)(t1 > t2)

. (1.17)

Therefore, we have

Ĝ12 + Ĝ21 = Ĝ11 + Ĝ22. (1.18)

By defining

Ĝ =

(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
, L =

1√
2

(
1 −1
1 1

)
(1.19)

we transform Ĝ

Ĝ → Lτ3ĜL
† =

(
GR GK

0 GA

)
(1.20)

GR = Ĝ11 − Ĝ12 (1.21)

GA = Ĝ11 − Ĝ21 (1.22)

GK = Ĝ11 + Ĝ22. (1.23)

This is called the Keldysh representaion[96].

1.4.2 Gor’kov equation

BCS Hamiltonian reads
∫ [

ψ†
α

(
−∇2

2m
− µ

)
ψα +

g

2
ψ†

βψ
†
αψαψβ

]
d3r. (1.24)

Here,

ψα (r, τ) = exp (Hτ)ψα (r) exp (−Hτ) , (1.25)

ψ†
α (r, τ) = exp (Hτ)ψ†

α (r) exp (−Hτ) , (1.26)

ψα (r) =
1√
V

∑

k

eikrc
kα, ψ

†
α (r) =

1√
V

∑

k

e−ikrc†
kα. (1.27)
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We define x = (r, τ ) and

Gαβ(x1, x2) =
〈
Tτ

(
ψα(x1)ψ†

β(x2)
)〉

(1.28)

=

{
ψα(x1)ψ†

β(x2), (τ1 > τ2)

−ψ†
β(x2)ψα(x1), (τ1 < τ2)

. (1.29)

Using Heisenberg’s equation of motion, we get

∂Gαβ(x1, x2)

∂τ1
= δαβδ (x1 − x2) +

(∇2
1

2m
+ µ

)
Gαβ(x1, x2) (1.30)

−g
〈
Tτ

(
ψ†

γ(x1)ψγ(x1)ψα(x1)ψ†
β(x2)

)〉
. (1.31)

Wick’s theorem gives
〈
Tτ

(
ψ†

γ(x1)ψγ(x1)ψα(x1)ψ†
β(x2)

)〉

= −
〈
Tτ

(
ψγ(x1)ψ†

γ(x1)
)〉 〈

Tτψα(x1)ψ†
β(x2)

〉

+
〈
Tτ

(
ψα(x1)ψ†

γ(x1)
)〉 〈

Tτψγ(x1)ψ†
β(x2)

〉

−
〈
Tτ

(
ψα(x1)ψγ(x1)

)〉 〈
Tτψ

†
γ(x1)ψ†

β(x2)
〉
. (1.32)

Also, we have

−
〈
Tτ

(
ψγ(x1)ψ†

γ(x1)
)〉 〈

Tτψα(x1)ψ†
β(x2)

〉

+
〈
Tτ

(
ψα(x1)ψ†

γ(x1)
)〉 〈

Tτψγ(x1)ψ†
β(x2)

〉

= −
∑

γγ
(x1)Gαβ (x1, x2) +

∑
αγ

(x1)Gγβ (x1, x2) (1.33)
∑

αβ
(x) =

〈
Tτ

(
ψα(x)ψ†

β(x)
)〉

(1.34)

Equation (1.34) is called self energy. Now, we define

F †
αβ (x1, x2) =

〈
Tτψ

†
α(x1)ψ†

β(x2)
〉
, (1.35)

Fαβ (x1, x2) =
〈
Tτψα(x1)ψβ(x2)

〉
, (1.36)

Gαβ(x1, x2) = −
〈
Tτψ

†
α(x1)ψβ(x2)

〉
= Gβα(x2, x1), (1.37)

∆αβ (x) = |g|Fαβ (x, x) . (1.38)

For singlet pairing, we have ∆αβ (x) = −∆βα (x) and assume that electron
electron interaction is independent of spin. Then, we get

∆αβ (x) = iτ
(2)
αβ ∆ (x) (1.39)

Gαβ (x1, x2) = δαβG (x1, x2) (1.40)

Fαβ (x1, x2) = iτ
(2)
αβ F (x1, x2) . (1.41)
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By incorporating self energy into µ, we obtain

(
∂

∂τ1
− ∇2

1

2m
− µ

)
Gαβ(x1, x2) + ∆ (x1)F † (x1, x2) = δ (x1 − x2) (1.42)

and for G,F, F † similarly

Ǧ−1 (x1) Ǧ (x1, x2) = δ (x1 − x2) , (1.43)

Ǧ (x1, x2) ≡
(

G (x1, x2) F (x1, x2)
−F † (x1, x2) G (x1, x2)

)
, (1.44)

Ǧ−1 ≡ τ3
∂

∂τ
+ Ȟ, Ȟ ≡

(
−∇2

2m
− µ −∆

∆∗ −∇2

2m
− µ

)
. (1.45)

This is called Gor’kov equation and widely used to study superconducting
properties.[106]

1.4.3 Quasiclassical approximation

Quasiclassical approximation is a well-used method to study the Fermionic
systems at low temperatures. [107] This method was first formulated by
Eilenberger[93] to study the equilibrium state. Later, Eliashberg[94] gen-
eralized this theory to apply to the nonequilibrium states. Now, we de-
fine p+= p+k

2
and p−= p−k

2
. Consider stationary systems which satisfies

pF ≫ ξ−1. Here, ξ is coherence length and ξ−1 ∼ ∆
vF

. Quasiclassical Green’s
functions are defined as

gωn (p̂,k) =

∮
1

πi
Gωn

(
p+,p−

)
dξp, (1.46)

ḡωn (p̂,k) =

∮
1

πi
Ḡωn

(
p+,p−

)
dξp, (1.47)

fωn (p̂,k) =

∮
1

πi
Fωn

(
p+,p−

)
dξp, (1.48)

f †
ωn

(p̂,k) =

∮
1

πi
F †

ωn

(
p+,p−

)
dξp (1.49)
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where the path of integration is chosen to take the contributions from poles
near Fermi surface. By Fourier transforming Gor’kov equation, we obtain

[
Ǧ−1Ǧ

]
= 1, (1.50)

[AB] =

∫
A (p+,p)B (p,p−) d3p, Ǧ−1 = Ǧ

−1

0 + Ȟ −
∑̌

, (1.51)

Ǧ
−1

0 =

(
−iω + ξp + vk

2
+ k2

8m
0

0 iω + ξp + vk

2
+ k2

8m

)
, (1.52)

Ȟ =

(
− e

c
vA (k) + eϕ −∆ (k)
∆∗ (k) e

c
vA (k) + eϕ

)
, Σ̌ =

(
Σ1 Σ2

−Σ†
2 Σ̄1

)
. (1.53)

Similarly, we have

[
ǦǦ−1

]
= 1, (1.54)

Ǧ−1 = Ǧ
−1

0 + Ȟ −
∑̌

, (1.55)

Ǧ
−1

0 =

(
iω + ξp − vk

2
+ k2

8m
0

0 −iω + ξp − vk

2
+ k2

8m

)
, (1.56)

Ȟ =

(
− e

c
vA (k) + eϕ −∆ (k)
∆∗ (k) e

c
vA (k) + eϕ

)
, Σ̌ =

(
Σ1 Σ2

−Σ†
2 Σ̄1

)
. (1.57)

From eq. (1.50) and eq.(1.54), we have

vFkǧ − iωn (τ̌3ǧ − ǧτ̌3) +
[
Ȟǧ − ǧȞ

]
= Ǐ, (1.58)

Ǐ =
[∑̌

ǧ − ǧ
∑̌]

=

(
I1 I2
−I †2 Ī1

)
, ǧωn (p̂,k) =

(
gωn fωn

−f †
ωn

ḡωn

)
. (1.59)

Equation (1.58) is the Eilenberger equation. With the use of Fourier trans-
formation, Eilenberger equation reads

vFkǧ − iωn (τ̌3ǧ − ǧτ̌3) + Ȟǧ − ǧȞ = Ǐ , (1.60)

ǧωn (p̂, r) =

∫
d3k

(2π)3 e
ikrǧωn (p̂,k) . (1.61)

In homogeneous systems, we have

g + ḡ = 0, g2 − ff † = 1. (1.62)

Hereafter, we assume that this relation holds. Then, we obtain the normal-
ization condition ǧ2 = 1. Note that there is a problem with this normaliza-
tion condition in the clean limit in finite size systems. In fact, quasiclassical
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approximation does not work in restricted geometry due to quasiparticle in-
terference between the interfaces.[108] However, the normalization condition
should hold in finite systems in the dirty limit –it is obtained as a saddle
point solution in nonlinear sigma model.[109]

Equation (1.60) can be rewritten as

−ivF∇̂ǧ + Ȟ0ǧ − ǧȞ0 = Ǐ, (1.63)

∇̂ǧ =

(
∇g

(
∇− 2ie

c
A
)
f

−
(
∇ + 2ie

c
A
)
f † −∇g

)
, Ȟ0 =

(
−iωn −∆
∆∗ iωn

)
.(1.64)

Here, we incorporate a vector potentail A. Next, we consider dirty limit case,

1

τ
≫ Tc, i.e., l≪ ξ0. (1.65)

Here, τ , Tc, l, and ξ0 are relaxation time, transition temperature, mean free
path and coherence length, respectively. When impurity scattering is strong,
we can set

ǧ = ǧ0 + v̂F ǧ, |g| ≪ g0 (1.66)

Here, ǧ0 is independent of vF . v̂F is a unit vector paralell to the momentum.
Then, with the Eilenberger equation and the normalization condition, we get

ǧ = −ltrǧ0∇̂ǧ0, ltr = vF τtr. (1.67)

Here, τtr is the scattering mean free time. Introducing dimension d and
diffusion constant D = 1

d
vF ltr, we obtain

iD∇̂
(
ǧ0∇̂ǧ0

)
+
(
Ȟ0ǧ0 − ǧ0Ȟ0

)
= 0. (1.68)

This is the Usadel equation which corresponds to the diffusion equation for
the quasiclassical Green’s fucntions and widely used to study proximity effect
in superconducting junctions.[110] Recently, by applying the nonlinear sigma
model[111, 112], the Usadel equation has been derived [109] and generalized
to incorporate Coulomb interaction.[113]

For the actual calculation, it is convenient to use the parametrization of
quasiclassical Green’s fucntions. For the Eilenberger equation, the Riccati
parametrization is known to give a stable and fast numerical method to solve
the Eilenberger equations.[114] The Riccati parametrization is defined as

ǧ = −
(

(1 + ab)−1 0
0 (1 + ba)−1

)(
1 − ab 2ia
−2ib −(1 − ba)

)
. (1.69)
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Then, the Eilenberger equations becomes

vF∇a+ (2ω + ∆∗a) a− ∆ = 0, (1.70)

vF∇b − (2ω + ∆b) b+ ∆∗ = 0 (1.71)

with Matsubara frequency ω. From these equations, we see that the following
relations hold with wave vector k and position r:

b(ω, k, r) = a∗(ω,−k, r) (1.72)

for even parity pairing and

b(ω, k, r) = −a∗(ω,−k, r) (1.73)

for odd parity pairing.
For the Usadel equation, the so-called θ-parametrization is often used. In

this case, we express ǧ as

ǧ = cosψ sin θτ̂1 + sinψ sin θτ̂2 + cos θτ̂3, (1.74)

with Pauli matrix in the electron hole space, τ̂1, τ̂2, and τ̂3. Since ǧ obeys
Usadel equation, following equations are satisfied,

D[
∂2

∂x2
θ − (

∂ψ

∂x
)2 cos θ sin θ] + 2iε sin θ = 0, (1.75)

∂

∂x
[sin2 θ(

∂ψ

∂x
)] = 0. (1.76)

The second equation represents the conservation of the supercurrent and
∂ψ/∂x = 0 when there is no supercurrent. This representation gives a stable
solution for the numerical calculation in real energy.

For the calculation of the thermodynamical quantities, we usually use
Matsubara representation. As a numerically stable parametrization, the rep-
resentation using function Φ is recommendable, namely

g =
ω√

ω2 + ΦωΦ∗
−ω

, (1.77)

f =
Φω√

ω2 + ΦωΦ∗
−ω

, (1.78)

−f † =
Φ∗

−ω√
ω2 + ΦωΦ∗

−ω

. (1.79)

Then, Usadel equation reads

ξ2πTC

Gω

∂

∂x

(
G2

ω

∂

∂x
Φω

)
− ωΦω = 0 (1.80)
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with ξ =
√
D/2πTC and critical temperature TC. θ and Φ-parametrizations

are related to each other as follows:

sin θ cosψ =
g

2ω

(
Φω + Φ∗

−ω

)
, (1.81)

sin θ sinψ =
ig

2ω

(
Φω − Φ∗

−ω

)
. (1.82)

1.5 Purpose and outline of this thesis

Up to now, no bulk material has been identified as odd frequency supercon-
ductor, which has severely hampered the progress of the study of odd fre-
quency superconductivity (note that a bulk odd-frequency state could be re-
alized in the heavy-fermion compounds CeCu2Si2 and CeRhIn5[115, 116, 117],
but this is still controversial). The study of odd frequency superconductivity
now lies in the womb of time. To facilitate the development, it is desirable
to clarify manifestations of odd frequency pairing in measurable quantities
like density of states.

In view of this, we study superconducting systems with broken symme-
try other than U(1) in this thesis –the presence of ferromagnet, vortex and
surface breaks symmetry in spin space and translational symmetry. These
broken symmetry is an important ingredient of the appearance of odd fre-
quency superconductivity which hardly appears in bulk materials. By con-
sidering these symmetry breaking systems, we will clarify how this exotic
pairing arises and manifests itself in observable quantities, and also related
phenomena, which will shed new light on the physics of the odd frequency
superconductivity.

In chapter 2, we study the conditions for the appearance of the peak
in the density of states in diffusive ferromagnet, in normal metal / diffu-
sive ferromagnet / superconductor junctions. A detailed theoretical study
of the tunneling conductance and the density of states in these junctions is
presented.

In chapter 3, we investigate the proximity effect and pairing symmtry in
diffusive ferromagnet / superconductor junctions. Various possible symme-
try classes in a superconductor are considered which are consistent with
the Pauli’s principle: even-frequency spin-singlet even-parity state, even-
frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity
state and odd-frequency spin-singlet odd-parity state. The relevance of the
odd-frequency to the density of states is discussed.

In chapter 4, we study pairing symmetry inside the Abrikosov vortex core
in superconductors. We show that only odd-frequency spin-singlet chiral p-
wave pairing is allowed at the center of the core in s-wave superconductors as
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a consequence of the broken translational symmetry. This makes it possible
to provide a novel interpretation of the Andreev bound states inside the
core as the manifestation of the odd-frequency pairing. We also unveil the
sum rule behind this phenomenon. Based on these results, we propose the
experimental setup to verify the existence of odd-frequency pairing in bulk
materials by using superconducting scanning tunneling spectroscopy.

In chapter 5, we study the density of states in chiral p-wave supercon-
ductor in the presence of an Abrikosov vortex in front of a specular surface.
We clarify that the density of states at the shadow region behind the vortex
is sensitive to the chirality. When the chirality of the vortex is the same as
(opposite to) that of the superconductor, the zero energy peak (gap) of the
density of states at the shadow region emerges. This is because the density of
states at the shadow region has a linear term of the vector potential. Based
on the results, we propose chirality sensitive test on superconductors.

In chapter 6, a summary of this thesis and outlook are given.
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Chapter 2

Resonant proximity effect in
normal metal / diffusive
ferromagnet / superconductor
junctions

2.1 Introduction

There is a continuously growing interest in the physics of charge and spin
transport in ferromagnet / superconductor (F/S) junctions. One of the ap-
plications of F/S junctions is determination of the spin polarization of the
F layer. Analyzing signatures of Andreev reflection [1] in differential con-
ductance by a modified Blonder, Tinkham and Klapwijk (BTK) theory[2],
one can estimate the spin polarization of the F layer [3, 4, 5, 6, 7, 8]. This
method was generalized and applied to ferromagnet / unconventional su-
perconductor junctions[9] . Most of these works are applicable to ballistic
ferromagnets while understanding of physics in contacts between diffusive
ferromagnets (DF) and (both conventional and unconventional) supercon-
ductors (S) is not complete yet. The model should also properly take into
account the proximity effect in the DF/S system.

In DF/S junctions Cooper pairs penetrating into the DF layer from the S
layer have nonzero momentum due to the exchange field[10, 11, 12, 13, 14, 15].
This property results in many interesting phenomena[16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 28, 27, 29, 30]. One interesting consequence of the oscillations
of the pair amplitude is the spatially damped oscillating behavior of the den-
sity of states (DOS) in a ferromagnet predicted theoretically [31, 33, 32, 34]
in various regimes. The energy dependent DOS calculated in the clean [32]
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and the dirty [35] limits exhibits rich structures. Experimentally DOS in
F/S bilayers was measured by Kontos et al. who found a broad DOS peak
around zero energy when the π-phase shift occurs[37]. In diffusive ferromag-
net/superconductor (DF/S) junctions the zero-energy DOS may have a sharp
peak [35]. However the conditions for the appearance of such anomaly have
not been studied systematically so far.

The purpose of the present chapter is to calculate DOS in N/DF/S junc-
tions and to formulate the conditions for the zero-energy DOS peak in two
regimes corresponding to the weak proximity effect (large DF/S interface re-
sistance) and strong proximity effect (small DF/S interface resistance). We
will show that in the former case the condition is equivalent to the one of Ref.
[35], while in the latter case the new condition is found. The calculation will
be performed in the zero-temperature regime by varying the interface resis-
tances as well as the resistance, the exchange field and the Thouless energy of
the DF layer. Since DOS is a fundamental quantity, this resonant proximity
effect can influence various physical quantities like transport phenomena.

It is known that in contacts involving unconventional superconductors
the so-called zero-bias conductance peak (ZBCP) takes place due to the for-
mation of the midgap Andreev resonant states (MARS) [38, 39, 40, 41]. An
interplay of the resonant proximity effect with MARS in DF/d-wave super-
conductor (DF/D) junctions is an interesting subject which deserves theo-
retical study.

Therefore, we will formulate theoretical model for the charge transport
in the normal metal/DF/s- and d-wave superconductor (N/DF/S) junctions
and to study the influence of the resonant proximity effect due to the ex-
change field on the tunneling conductance and the DOS. A number of phys-
ical phenomena may coexist in these structures such as impurity scattering,
oscillating pair amplitude, phase coherence and MARS. We will employ the
quasiclassical Usadel equations [42] with the Kupriyanov-Lukichev boundary
conditions [43] generalized by Nazarov within the circuit theory [44]. The
generalized boundary conditions are relevant for the actual junctions when
the barrier transparency is not small. New physical phenomena regarding
zero-bias conductance are properly described within this approach, e.g., the
crossover from a ZBCP to a zero bias conductance dip (ZBCD). The gen-
eralized boundary conditions were recently applied to the study of contacts
of diffusive normal metals (DN) with conventional [45] and unconventional
superconductors [46, 47, 48]. Here we consider the case of N/DF/S junctions
with a weak ferromagnet having small exchange field comparable with the
superconducting gap. SF contacts with weak ferromagnets were realized in
recent experiments with, e.g., CuNi alloys [16], Ni doped Pd[37] or magnetic
semiconductors. Therefore, our results are applicable to these materials and

46



may be observed experimentally.
The normalized conductance of the N/DF/S junction σT (eV ) = σS(eV )/σN (eV )

will be studied as a function of the bias voltage V , where σS(N )(eV ) is the
tunneling conductance in the superconducting (normal) state. We will con-
sider the influence of various parameters on σT (eV ), such as the height of the
interface insulating barriers, the resistance Rd, the exchange field h and the
Thouless energy ETh in the DF layer. In the case of d-wave superconductor,
important parameter is the angle between the normal to the interface and
the crystal axis of d-wave superconductor α. Throughout the chapter we
confine ourselves to zero temperature and put kB = ~ = 1.

The organization of this chapter is as follows. In section 2, we will pro-
vide the detailed derivation of the expression for the normalized tunneling
conductance. In section 3, the results of calculations are presented for vari-
ous types of junctions. In section 4, the summary of the obtained results is
given.

2.2 Formulation

In this section we introduce the model and the formalism. We consider a
junction consisting of normal and superconducting reservoirs connected by
a quasi-one-dimensional diffusive ferromagnet (DF) conductor with a length
L much larger than the mean free path. The interface between the DF
conductor and the S electrode has a resistance Rb while the DF/N interface
has a resistance R′

b. The positions of the DF/N interface and the DF/S
interface are denoted as x = 0 and x = L, respectively. We model infinitely
narrow insulating barriers by the delta function U(x) = Hδ(x−L)+H ′δ(x).
The resulting transparency of the junctions Tm and T ′

m are given by Tm =
4cos2 φ/(4 cos2 φ+Z2) and T ′

m = 4cos2 φ/(4 cos2 φ+Z ′2), where Z = 2H/vF

and Z ′ = 2H ′/vF are dimensionless constants and φ is the injection angle
measured from the interface normal to the junction and vF is Fermi velocity.

We apply the quasiclassical Keldysh formalism in the following calcu-
lation of the tunneling conductance. The 4 × 4 Green’s functions in N,
DF and S are denoted by Ǧ0(x), Ǧ1(x) and Ǧ2(x) respectively where the
Keldysh component K̂0,1,2(x) is given by K̂i(x) = R̂i(x)f̂i(x) − f̂i(x)Âi(x)

with retarded component R̂i(x), advanced component Âi(x) = −R̂∗
i (x) using

distribution function f̂i(x)(i = 0, 1, 2). In the above, R̂0(x) is expressed by
R̂0(x) = τ̂3 and f̂0(x) = fl0 + τ̂3ft0. R̂2(x) is expressed by R̂2(x) = gτ̂3 + fτ̂2
with g = ǫ/

√
ǫ2 − ∆2 and f = ∆/

√
∆2 − ǫ2, where τ̂2 and τ̂3 are the Pauli

matrices, and ε denotes the quasiparticle energy measured from the Fermi
energy and f̂2(x) = tanh(ǫ/2T ) in thermal equilibrium with temperature T .
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We put the electrical potential zero in the S-electrode. In this case the spatial
dependence of Ǧ1(x) in DF is determined by the static Usadel equation [42],

D
∂

∂x
[Ǧ1(x)

∂Ǧ1(x)

∂x
] + i[Ȟ, Ǧ1(x)] = 0 (2.1)

with the diffusion constant D in DF. Here Ȟ is given by

Ȟ =

(
Ĥ0 0

0 Ĥ0

)
,

with Ĥ0 = (ǫ − (+)h)τ̂3 for majority(minority) spin where h denotes the
exchange field. Note that we assume a weak ferromagnet and neglect the
difference of Fermi velocity between majority spin and minority spin. The
Nazarov’s generalized boundary condition for Ǧ1(x) at the DF/S interface is
given in Refs.[45, 47]. The generalized boundary condition for Ǧ1(x) at the
DF/N interface has the form:

L

Rd
(Ǧ1

∂Ǧ1

∂x
)|x=0+

= −R′
b
−1
< B >′, (2.2)

B =
2T ′

m[Ǧ0(0−), Ǧ1(0+)]

4 + T ′
m([Ǧ0(0−), Ǧ1(0+)]+ − 2)

.

The average over the various angles of injected particles at the interface is
defined as

< B(φ) >(′)=

∫ π/2

−π/2
dφ cos φB(φ)

∫ π/2

−π/2
dφT (′)(φ) cos φ

with B(φ) = B and T (′)(φ) = T
(′)
m . The resistance of the interface Rb is given

by

R
(′)
b = R

(′)
0

2
∫ π/2

−π/2
dφT (′)(φ) cosφ

.

Here R
(′)
0 is Sharvin resistance given by R

(′)−1
0 = e2k2

FS
(′)
c /(4π2) in the three-

dimensional case.
The electric current per spin direction is expressed using Ǧ1(x) as

Iel =
−L
8eRd

∫ ∞

0

dǫTr[τ̂3(Ǧ1(x)
∂Ǧ1(x)

∂x
)K ], (2.3)
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where (Ǧ1(x)
∂Ǧ1(x)

∂x
)K denotes the Keldysh component of (Ǧ1(x)

∂Ǧ1(x)
∂x

). In
the actual calculation it is convenient to use the standard θ-parameterization
where function R̂1(x) is expressed as R̂1(x) = τ̂3 cos θ(x) + τ̂2 sin θ(x). The
parameter θ(x) is a measure of the proximity effect in DF.

The distribution function f̂1(x) is given by f̂1(x) = fl(x) + τ̂3ft(x) where
the component ft(x) determines the conductance of the junction we are now
concentrating on. From the retarded or advanced component of the Usadel
equation, the spatial dependence of θ(x) is determined by the following equa-
tion

D
∂2

∂x2
θ(x) + 2i(ǫ− (+)h) sin[θ(x)] = 0 (2.4)

for majority(minority) spin, while for the Keldysh component we obtain

D
∂

∂x
[
∂ft(x)

∂x
cosh2θim(x)] = 0. (2.5)

At x = 0, since ft0 is the distribution function in the normal electrode, it is
given by

ft0 =
1

2
{tanh[(ǫ+ eV )/(2T )] − tanh[(ǫ− eV )/(2T )]}. (2.6)

Next we focus on the boundary condition at the DF/N interface. Taking the
retarded part of Eq. (2.2), we obtain

L

Rd

∂θ(x)

∂x
|x=0+

=
< F >′

R′
b

,

F =
2T ′

m sin θ0

(2 − T ′
m) + T ′

m cos θ0
, (2.7)

with θ0 = θ(0+).
On the other hand, from the Keldysh part of Eq. (2.2), we obtain

L

Rd

(
∂ft

∂x
)cosh2θim(x) |x=0+

= −< Ib1 >
′ (ft0 − ft(0+))

R′
b

, (2.8)

with

Ib1 =
T ′2

mΛ′
1 + 2T ′

m(2 − T ′
m)Real{cos θ0}

| (2 − T ′
m) + T ′

m cos θ0 |2
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Λ′
1 = (1+ | cos θ0 |2 + | sin θ0 |2).

Finally, we obtain the following result for the electric current through the
contact

Iel =
1

2e

∫ ∞

0

dǫ
ft0

Rb

<Ib0>
+ Rd

L

∫ L

0
dx

cosh2 θim(x)
+

R′

b

<Ib1>′

. (2.9)

Then the differential resistance R per one spin projection at zero temperature
is given by

R =
2Rb

< Ib0 >
+

2Rd

L

∫ L

0

dx

cosh2 θim(x)
+

2R′
b

< Ib1 >′
(2.10)

with

Ib0 =
T 2

mΛ1 + 2Tm(2 − Tm)Λ2

2 | (2 − Tm) + Tm[g cos θL + f sin θL] |2 ,

Λ1 = (1+ | cos θL |2 + | sin θL |2)(| g |2 + | f |2 +1)

+4Imag[fg∗]Imag[cos θL sin θ∗L], (2.11)

Λ2 = Real{g(cos θL + cos θ∗L) + f(sin θL + sin θ∗L)}. (2.12)

This is an extended version of the Volkov-Zaitsev-Klapwijk formula [49].
For a d-wave junction, the function Ib0 is given by the following expression[47]

Ib0 =
Tm

2

C0

| (2 − Tm)(1 + g+g− + f+f−) + Tm[cos θL(g+ + g−) + sin θL(f+ + f−)] |2

C0 = Tm(1+ | cos θL |2 + | sin θL |2)[| g+ + g− |2 + | f+ + f− |2

+ | 1 + f+f− + g+g− |2 + | f+g− − g+f− |2]
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+2(2− Tm)Real{(1 + g∗+g
∗
− + f∗

+f
∗
−)[(cos θL + cos θ∗L)(g+ + g−) + (sin θL + sin θ∗L)(f+ + f−)]}

+4TmImag(cos θL sin θ∗L)Imag[(f+ + f−)(g∗+ + g∗−)], (2.13)

g± = ε/
√
ε2 − ∆2

±, f± = ∆±/
√

∆2
± − ε2 and ∆± = ∆ cos 2(φ ∓ α). In

the above α, θim(x) and θL denote the angle between the normal to the
interface and the crystal axis of d-wave superconductors, the imaginary part
of θ(x) and θ(L−) respectively. Then the total tunneling conductance in the
superconducting state σS(eV ) is given by σS(eV ) =

∑
↑,↓ 1/R. The local

normalized DOS N(ε, x) in the DF layer is given by

N(ε, x) =
1

2

∑

↑,↓

Re cos θ(x).

It is important to note that in the present approach, according to the
circuit theory, Rd/R

(′)
b can be varied independently of T

(′)
m , i.e., independently

of Z(′). Based on this fact, we can choose Rd/R
(′)
b and Z(′) as independent

parameters.
In the following section, we will discuss the DOS and the normalized tun-

neling conductance σT (eV ) = σS(eV )/σN (eV ) where σN(eV ) is the tunneling
conductance in the normal state given by σN(eV ) = σN = 1/(Rd +Rb +R′

b).

2.3 Results

In this section, we first formulate the conditions for the formation of zero-
energy peak in DOS. Next, we study the influence of the resonant proximity
effect on tunneling conductance as well as the DOS in the DF region. The
resonant proximity effect are shown to be characterized as follows. When
the proximity effect is weak (Rd/Rb ≪ 1), the resonant condition is given
by Rd/Rb ∼ 2h/ETh due to the exchange splitting of DOS in different spin
subbands. When the proximity effect is strong (Rd/Rb ≫ 1), the condition
is given by ETh ∼ h and is realized when the length of a ferromagnet is equal
to the coherence length ξF =

√
D/h.

In subsections 2.3.2 and 2.3.3, we choose Rd/Rb = 1 and Rd/Rb = 5 as
typical values representing the weak and strong proximity regime, respec-
tively. We fix Z ′ = 3 because this parameter doesn’t change the results
qualitatively and consider the case of high barrier at the N/DF interface,
Rd/R

′
b = 0.1, when the proximity effect is strong.
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2.3.1 Conditions for the formation of zero-energy peak
in DOS

Below we will concentrate on the DOS at x = 0 (N/DF interface) in the
regime of large resistance of the N/DF interface, Rd/R

′
b ≪ 1 and will also

fix the barrier transparency parameters Z = 3, Z ′ = 3.
In order to study the condition for the appearance of the zero energy

DOS peak, we plot the normalized zero energy DOS at x = 0 as a function
of ETh = D/L2. Figure 2.1 shows the DOS for Rd/R

′
b = 0.1 and various

h/∆. In Fig. 2.1 (a) the zero-energy peak appears at ETh ∼ 2hRb/Rd, while
in Fig. 2.1 (b) and (c) the peak appears at ETh ∼ h. Thus we can conclude
that the condition for the DOS peak for large Rd/Rb is essentially different
from the one for small Rd/Rb.

Figure 2.2 shows the DOS as a function of ε for the parameters corre-
sponding to the peaks in Fig. 2.1 for various h/∆. In all these cases the DOS
peak appears around zero energy. For small h/∆ the DOS peak is narrow
but it becomes broader with the increase of h/∆. It’s important to note that
this peak does not always require the sign change of pair amplitude. This is
also clear from the fact that the peak occurs for large Thouless energy (short
DF) when there is no sign change. For other set of parameters the DOS peak
is smeared as they break the condition ETh ∼ 2hRb/Rd or ETh ∼ h.

Let us first discuss the case of strong proximity effect in detail. Fig. 2.3
shows the zero energy DOS at x = 0 as a function of ETh for h/∆ = 1 and
various Rd/R

′
b with (a) Rd/Rb = 5 and (b) Rd/Rb = 10. In this case the peak

at ETh ∼ h is suppressed with increasing Rd/R
′
b. Therefore this condition is

valid for small Rd/R
′
b.

Figure 2.4 shows the spatial dependence of Imθ for majority spin for
Rd/R

′
b = 0.1, ETh/∆ = 1 and various h/∆ with (a) Rd/Rb = 5 and (b)

Rd/Rb = 10. For the appearance of the DOS peak, large value of Imθ is
needed because the normalized DOS is given by Recos(θ) = cos(Re(θ)) cosh(Im(θ)).
As seen from Fig. 2.4, the magnitude of Imθ increases with the increase of the
distance from the DF/S interface and achieves a maximum when ETh = h.

Note that the zero-energy DOS at x = 0 does not depend on ETh if the
condition ETh = h holds. To explain that, let’s write Eqs. 2.4 and 2.7 at
ε = 0:

∂2

∂y2
θ(y) − (+)2i sin[θ(y)] = 0 (2.14)

1

Rd

∂θ(y)

∂y
|y=0+

=
< F >′

R′
b

(2.15)
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where y ≡ x/
√
D/h. Since for ETh = h we have D/h ≡ EThL

2/h = L2, the
above equations don’t contain ETh as a parameter. Similar arguments can
be applied to another boundary condition at DF/S interface. This proves
the above statement about independence of the zero-energy DOS at x = 0
on ETh.

Now let us discuss the weak proximity effect and derive the condition
Rd/Rb ∼ 2h/ETh, following Ref. [35]. When spatial variation of θ is small,
i.e., L≪

√
D/ | ε∓ h | (for the spin-up or spin-down subband respectively)

and both Rd/Rb and Rd/R
′
b are small (weak proximity effect), θ can be

expanded as θ = θ0 + θ1x+ θ2x
2 where θ1, θ2 ≪ θ0. Note that the derivatives

of θ are proportional to these quantities at the interfaces (see Eq. (2.7) and
Ref. [45]).

In this case the solution of the Usadel equation in the spin-up subband
satisfying boundary conditions has the form:

cos θ0↑ =

Rd

R′

b

+ Rd

Rb
g − 2i(ε−h)

ETh√(
Rd

Rb
f
)2

+
(

Rd

R′

b

+ Rd

Rb
g − 2i(ε−h)

ETh

)2
. (2.16)

For Rd/R
′
b = 0 and ε = 0, the DOS has the form

cos θ0↑ =

2ih
ETh√(

Rd

Rb

)2

−
(

2h
ETh

)2
, (2.17)

which provides the resonant condition Rd/Rb ∼ 2h/ETh. Similar result fol-
lows for the spin-down subband by replacing h by −h.

Another resonant condition for the strong proximity effect, ETh ∼ h,
is equivalent to the condition L ∼

√
D/h. Thus, zero-energy DOS peak

appears when the proximity effect is strong and the length of ferromagnet is
of the order of the coherence length in a ferromagnet ξF =

√
D/h.

Let us discuss the physical meaning of two conditions. In DN/S junctions
there is a minigap Eg, where Eg ∼ EThRd/Rb for weak proximity effect, or
Eg ∼ ETh for strong proximity effect[47]. In DF/S junctions this minigap is
shifted by h, then the DOS peak appears when h ∼ Eg .

Note that in the calculations we have fixed Z = Z ′ = 3, but the specific
parameter choice does not change the results qualitatively.
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Figure 2.1: Normalized zero energy DOS as a function of ETh for large re-
sistance of the N/DF interface Rd/R

′
b = 0.1 and various h/∆

with resistance ratios at the DF/S interface (a) Rd/Rb = 1, (b)
Rd/Rb = 5 and (c) Rd/Rb = 10.
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Figure 2.2: Normalized DOS as a function of ε for Rd/R

′
b = 0.1 and various

h/∆ with (a) Rd/Rb = 1 and ETh = 2hRb/Rd = 2h, (b) Rd/Rb =
5 and ETh = h, and (c) Rd/Rb = 10 and ETh = h.
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Figure 2.3: Normalized DOS at zero energy as a function of ETh for h/∆ = 1
and various Rd/R

′
b with (a) Rd/Rb = 5 and (b) Rd/Rb = 10.
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Figure 2.4: Spatial dependence of Imθ for majority spin for Rd/R
′
b = 0.1,

ETh/∆ = 1 and various h/∆ with (a) Rd/Rb = 5 and (b)
Rd/Rb = 10. The DF/N interface and the DF/S interface are
located at x = 0 and x = L respectively.
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2.3.2 Junctions with s-wave superconductors

Here, we first choose the weak proximity regime and relatively small Thouless
energy, ETh/∆ = 0.01. In this case the resonant condition is satisfied for
h/∆ = 0.005. In Fig. 2.5 the tunneling conductance is plotted for Rd/Rb = 1,
ETh/∆ = 0.01 and various h/∆ with (a) Z = 3 and (b) Z = 0. The ZBCP
and ZBCD occur due to the proximity effect for h = 0. For h/∆ = 0.005, the
resonant ZBCP appears and split into two peaks or dips at eV ∼ ±h with
increasing h/∆. The value of the resonant ZBCP exceeds unity. Note that
ZBCP due to the conventional proximity effect in DN/S junctions is always
less than unity [50, 49, 45] and therefore is qualitatively different from the
resonant ZBCP in the DF/S junctions.

The corresponding normalized DOS of the DF is shown in Fig. 2.6. Note
that in the DN/S junctions, the proximity effect is almost independent on
Z parameter[45]. We have checked numerically that this also holds for the
proximity effect in DF/S junctions. Figure 2.6 displays the DOS for Z = 3,
Rd/Rb = 1 and ETh/∆ = 0.01 with (a) h/∆ = 0 and (b) h/∆ = 0.005
corresponding to the resonant condition. For h = 0, a sharp dip appears
at zero energy over the whole DF region. For nonzero energy, the DOS is
almost unity and spatially independent. For h/∆ = 0.005 a zero energy peak
appears in the region of DF near the DF/N interface. This peak is responsible
for the large ZBCP shown in Fig. 2.5. Therefore ZBCP in DF/S junctions
has different physical origin compared to the one in DN/S junctions.

Next we choose the strong proximity regime and relatively small Thouless
energy, ETh/∆ = 0.01. In the present case, the resonant ZBCP is expected
for h/∆ = 0.01. Figure 2.7 displays the tunneling conductance for Rd/Rb = 5
and ETh/∆ = 0.01 and various h/∆ with (a) Z = 3 and (b) Z = 0. In this
case we also find resonant ZBCP and splitting of the peak as in Fig. 2.5. The
corresponding DOS of Fig. 2.7(a) is shown in Fig. 2.8 for (a) h/∆ = 0 and
(b) h/∆ = 0.01. For h = 0, a sharp dip appears at zero energy. For finite
energy the DOS is almost unity and spatially independent. For h/∆ = 0.01
a peak occurs at zero energy in the range of x near the DF/N interface.
We can find similar structures in the corresponding conductance as shown in
Fig. 2.7. The DOS around zero energy is strongly suppressed at the DF/S
interface (x = L) compared to the one in Fig. 2.6.

Let us study the junctions with relatively large Thouless energy. In this
case, tunneling conductance is insensitive to the change of Z. In Fig. 2.9 we
show the tunneling conductance and corresponding DOS for Z = 3, Rd/Rb =
1, ETh/∆ = 10 and various h/∆. We find the broad peak of the conductance
by the resonant proximity effect for h/∆ = 5 in Fig. 2.9 (a). For h/∆ = 0,
the DOS has a gap-like structure as shown in Fig. 2.9 (b) while for h/∆ = 5
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Figure 2.5: Normalized tunneling conductance for s-wave superconductors

with Rd/Rb = 1 and ETh/∆ = 0.01.

it has a zero-energy peak as shown in Fig. 2.9 (c). Similar plots are shown
in Fig. 2.10 for Z = 3, Rd/Rb = 5, ETh/∆ = 10 and various h/∆. We find
the broad ZBCP by the resonant proximity effect for h/∆ = 10 in Fig. 2.10
(a). The DOS for h/∆ = 0 has a gap-like structure as shown in Fig. 2.10
(b). For h/∆ = 10 a zero-energy peak appears as shown in Fig. 2.10 (c).

Before ending this subsection we will look at the spatial dependence of
the proximity parameter, θ. Figure 2.11 displays the spatial dependence
of Reθ and Imθ for majority spin at zero energy. We choose the same
parameters as those in Fig 2.5 (a) and Fig 2.7 (a) for (a) and (b), and
(c) and (d) in Fig. 2.11 respectively. For the appearance of the DOS
peak, large value of Imθ is needed because the normalized DOS is given
by Recos(θ) = cos(Re(θ)) cosh(Im(θ)). When the resonant conditions are
satisfied, Imθ has an actually large value as shown in Fig. 2.11 (b) and (d).
Otherwise we can see the damped oscillating behavior of the proximity pa-
rameter. In contrast to Imθ, Reθ becomes suppressed with increasing h/∆
independently of the resonant proximity effect (Fig. 2.11 (a) and (c)).
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Figure 2.6: Normalized DOS for s-wave superconductors with Z = 3,
Rd/Rb = 1 and ETh/∆ = 0.01.
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Figure 2.9: Normalized tunneling conductance and corresponding DOS for s-
wave superconductors with Z = 3, Rd/Rb = 1 and ETh/∆ = 10.
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Figure 2.11: Spatial dependence of Reθ and Imθ for s-wave superconduc-
tors with Z = 3, ETh/∆ = 0.01. Rd/Rb = 1 (left panels) and
Rd/Rb = 5 (right panels).
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2.3.3 Junctions with d-wave superconductors
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Figure 2.12: Normalized tunneling conductance for d-wave superconductors
with Z = 3 and Rd/Rb = 1.

In this subsection, we focus on the d-wave junctions both for weak and
strong proximity regimes. In this case, depending on the orientation angle
α, the proximity effect is drastically changed: as α increases the proximity
effect is suppressed[46, 47]. For α = 0 we can expect similar results to the
s-wave junctions since proximity effect exists while the MARS is absent. On
the other hand, the tunneling conductance for large α is almost independent
of h/∆. Especially, the conductance is independent of h for α/π = 0.25 due
to the complete absence of the proximity effect. Two different mechanisms
of formation of ZBCP exist in DF/D junctions: the ZBCP caused by the
resonant proximity effect peculiar to a ferromagnet and the ZBCP caused by
the MARS located at DF/D interface. When α increases, MARS are formed
and at the same time the proximity effect becomes weakened. Therefore the
MARS provide the dominant contribution to the ZBCP compared to the
resonant proximity effect, as will be discussed below.

First we choose the weak proximity regime where the resonant condition
is h/∆ = 0.005. Figure 2.12 displays the tunneling conductance for Z = 3,
Rd/Rb = 1 and various α with (a) ETh/∆ = 0.01 and h/∆ = 0, (b) ETh/∆ =
0.01 and h/∆ = 0.005, (c) ETh/∆ = 10 and h/∆ = 0, and (d) ETh/∆ = 10
and h/∆ = 5. For ETh/∆ = 0.01 and h = 0 ZBCD appears for α/π = 0 due
to the proximity effect as in the case of the s-wave junctions while ZBCP
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appears for α/π = 0.25 due to the formation of the MARS (Fig. 2.12 (a)).
For ETh/∆ = 0.01 and h/∆ = 0.005, the height of the ZBCP by the resonant
proximity effect exceeds the one by MARS for α/π = 0.25 (Fig. 2.12 (b)).
Since in the ballistic junctions, the ZBCP for α/π = 0.25 is most strongly
enhanced[39, 40, 41], this ZBCP by the resonant proximity effect in DF is a
remarkable feature. Such a feature is also expected for a larger magnitude of
ETh. For ETh/∆ = 10 and h = 0, a V-like shape of the conductance appears
for α/π = 0 while ZBCP appears for α/π = 0.25 (Fig. 2.12 (c)). In this case,
by choosing h/∆ = 5, a broad peak by the resonant proximity effect appears
for α/π = 0 and its height exceeds the one for α/π = 0.25 (Fig. 2.12 (d)).

We also study the DOS of the DF for the same parameters as those in Fig.
2.12 (d) with (a) α/π = 0 and (b) α/π = 0.125 in Fig. 2.13. For α/π = 0 a
zero-energy peak appears as in the case of s-wave junctions. With increasing
α the DOS around zero energy becomes suppressed due to the reduction of
the proximity effect. The extreme case is α/π = 0.25, where the DOS is
always unity since the proximity effect is completely absent.

Next we consider the junctions in the strong proximity regime. Figure
2.14 shows the tunneling conductance for Z = 3, Rd/Rb = 5 and various α
with (a) ETh/∆ = 0.01 and h/∆ = 0, (b) ETh/∆ = 0.01 and h/∆ = 0.01, (c)
ETh/∆ = 10 and h/∆ = 0 and (d) ETh/∆ = 10 and h/∆ = 10. In this case
we also find the ZBCP for α = 0 caused by the resonant proximity effect.
This ZBCP becomes suppressed as α increases, as shown in Figs. 2.14(b)
and (d).

The corresponding DOS of the DF for Fig. 2.14(d) is shown in Fig.
2.15. The line shapes of the LDOS at x = 0 are qualitatively similar to the
tunneling conductance. The DOS at the DF/S interface (x = L) is drastically
suppressed as compared to the one in Fig. 2.13.
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Figure 2.13: Normalized DOS for d-wave superconductors with Z = 3,
Rd/Rb = 1, ETh/∆ = 10 and h/∆ = 5. (a) α/π = 0 and
(b)α/π = 0.125.
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Figure 2.14: Normalized tunneling conductance for d-wave superconductors

with Z = 3 and Rd/Rb = 5.
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Figure 2.15: Normalized DOS for d-wave superconductors with Z = 3,
Rd/Rb = 5, ETh/∆ = 10 and h/∆ = 10. (a) α/π = 0 and
(b)α/π = 0.125.
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2.4 Conclusions

We have studied the conditions for the appearance of the DOS peak in dif-
fusive ferromagnet, in normal metal / diffusive ferromagnet / s-wave super-
conductor junctions. We have discussed two regimes of weak and strong
proximity effect depending on the ratio Rd/Rb. The results in the regime of
weak proximity effect are essentially the same as found in Ref. [35]. However,
in the regime of strong proximity effect the results are qualitatively different.
Let us summarize the two conditions:

1. When the proximity effect is weak (Rd/Rb ≪ 1), the condition for the
DOS peak is Rd/Rb ∼ 2h/ETh.

2. When the proximity effect is strong (Rd/Rb ≫ 1), the DOS peak
appears when ETh ∼ h, i.e. when the length of ferromagnet is of the order
of the coherence length

√
D/h.

Note that the above two conditions cross over into each other when
Rd/Rb ∼ 2. Since the DOS is a fundamental quantity affecting various phys-
ical properties, our results may have many applications like charge transport
which we discussed.

We presented a detailed theoretical study of the tunneling conductance
and the density of states in normal metal / diffusive ferromagnet / s- and
d-wave superconductor junctions. We have clarified that the resonant prox-
imity effect strongly influences the tunneling conductance and the density of
states. There are several points which have been clarified in this chapter.

1. For s-wave junctions, due to the resonant proximity effect, a sharp
ZBCP appears for small ETh while a broad ZBCP appears for large ETh. We
have shown that the mechanism of the ZBCP in DF/S junctions is essentially
different from that in DN/S junctions and is due to the strong enhancement
of DOS at a certain value of the exchange field. As a result, the magnitude
of ZBCP in DF/S can exceed its normal state value in contrast to the case
of DN/S junctions.

2. For d-wave junctions at α = 0, similar to the s-wave case, a sharp
ZBCP is formed when the resonant condition is satisfied. At finite misorien-
tation angle α, the MARS contribute to the conductance when Rd/Rb ≪ 1
and Z ≫ 1. With the increase of α the contribution of the resonant proxim-
ity effect becomes smaller while the MARS dominate the conductance. As a
result, for sufficiently large α ZBCP exists independently of whether the res-
onant condition is satisfied or not. In the opposite case of the weak barrier,
Rd/Rb ≫ 1, the contribution of MARS is negligible and ZBCP appears only
when the resonant condition is satisfied.
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Chapter 3

Manifestation of the
odd-frequency spin-triplet
pairing state in diffusive
ferromagnet/superconductor
junctions

3.1 Introduction

Ferromagnet/superconductor structures with conventional spin-singlet s-wave
superconductors have been the subject of extensive work during the past
decade [1, 2, 3]. An exciting manifestation of anomalous proximity effect in
these structures is the existence of the so-called π-junctions in SFS Josephson
junctions confirmed experimentally in [4, 5, 6, 7, 8, 9, 10, 11, 12]. Recently,
diffusive ferromagnet/superconductor (DF/S) junctions have received much
attention due to the possibility of generation of the odd-frequency pairing in
these structures [13, 2]. In DF, due to the isotropization by the impurity scat-
tering, only even-parity s-wave pairing is allowed. Besides this, the exchange
field breaks the time reversal symmetry and both spin-singlet and spin-triplet
Cooper pairs can coexist. In accordance with the Pauli’s principle, this spin-
triplet state belongs to the odd-frequency spin-triplet even-parity (OTE)
pairing [13, 2]. Various aspects of this state have been addressed in recent
theoretical work [2, 14, 18, 15, 16, 17] and first experimental observation of
the long-range proximity effect due to the odd-frequency pairing was reported
in [19, 20].

Odd-frequency pairing is an unique state which was first proposed by
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Berezinskii [21] as a hypothetical state of 3He. The odd-frequency supercon-
ductivity was then discussed in the context of various pairing mechanisms
involving strong correlations [22, 23, 24]. However, proximity effect in the
presence of odd-frequency superconducting state has not been studied up to
very recently.

A general theory of the proximity effect in junctions composed of diffu-
sive normal metal (DN) and unconventional superconductor in the frame-
work of the quasiclassical Green’s function formalism was recently presented
[25]. Various possible symmetry classes in a superconductor were considered
in Ref.[25] which are consistent with the Pauli’s principle: even-frequency
spin-singlet even-parity (ESE) state, even-frequency spin-triplet odd-parity
(ETO) state, odd-frequency spin-triplet even-parity (OTE) state and odd-
frequency spin-singlet odd-parity (OSO) state. For each of the above four
cases, symmetry and spectral properties of the induced pair amplitude in
the DN were determined. It was shown that the pair amplitude in a DN
belongs respectively to ESE, OTE, OTE and ESE pairing states. It is re-
markable that OTE state is realized without assuming magnetic ordering in
DN/ETO superconductor junctions, where the mid gap Andreev resonant
state [26] formed at the interface penetrates into the DN and the resulting
local density of states (LDOS) has a zero energy peak (ZEP) [27].

On the other hand, the existence of ZEP in LDOS in the DF/ ESE s-
wave superconductor junctions has been established [29, 5, 30, 31, 32, 28].
Although the conditions of the formation of ZEP in DF regions were for-
mulated in the previous chapter, possible relation between the ZEP and the
formation of OTE paring in DF has not been yet clarified. The present
chapter addresses this issue. We also study the proximity effect in DF/ETO
p-wave superconductor junctions. It was shown in Ref. [25] that only the
OTE pairing state is generated without exchange field h. It is an interest-
ing question how this unusual proximity effect is influenced by the exchange
field.

The organization of this chatper is as follows. In section 2, we formulate
the proximity effect model in DF / S junctions within the theory applicable
to unconventional superconductor junctions where the MARS are naturally
taken into account in the boundary condition for the quasiclassical Green’s
function [27]. We discuss the general properties of the proximity effect by
choosing ESE, ETO, OTE, and OSO superconductor junctions. It is clarified
that the OTE, ESE, ESE and OTE states are, respectively, generated in the
DF in the presence of exchange field h. In section 3 we calculate the pair
amplitude in DF for spin-singlet s-wave and spin-triplet p-wave superconduc-
tor junctions as an example of ESE and ETO superconductor junctions. For
s-wave junctions, it is revealed that a generation of the OTE pairing state by
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the exchange field h causes an enhancement of the zero energy LDOS in the
DF. On the other hand, for p-wave superconductor junctions, a generation
of ESE pairing state by h results in a splitting of ZEP of LDOS. We clarify
the relation between the ZEP in LDOS and the generation of the OTE state
in the DF. The summary of the results is given in section 4.

3.2 Formulation

Let us start with the formulation of the general symmetry properties of the
quasiclassical Green’s functions in the considered system following the dis-
cussion in the Ref. [25]. The elements of retarded and advanced Nambu
matrices ĝR,A

ĝR,A =

(
gR,A fR,A

f̃R,A g̃R,A

)
(3.1)

are composed of the normal gR
α,β(r, ε,p) and anomalous fR

α,β(r, ε,p) compo-
nents with spin indices α and β. Here p = pF/ | pF |, pF is the Fermi
momentum, r and ε denote coordinate and energy of a quasiparticle mea-
sured from the Fermi level respectively. The function fR and the conjugated
function f̃R satisfy the following relation [34, 35]

f̃R
α,β(r, ε,p) = −[fR

α,β(r,−ε,−p)]∗. (3.2)

The Pauli’s principle is formulated in terms of the retarded and the ad-
vanced Green’s functions in the following way [34]

fA
α,β(r, ε,p) = −fR

β,α(r,−ε,−p). (3.3)

By combining the above two equations, we obtain f̃R
β,α(r, ε,p) = [fA

α,β(r, ε,p)]∗.
Further, the definitions of the even-frequency and the odd-frequency pairing
are fA

α,β(r, ε,p) = fR
α,β(r,−ε,p) and fA

α,β(r, ε,p) = −fR
α,β(r,−ε,p), respec-

tively. Finally we get

f̃R
β,α(r, ε,p) = [fR

α,β(r,−ε,p)]∗ (3.4)

for the even-frequency pairing and

f̃R
β,α(r, ε,p) = −[fR

α,β(r,−ε,p)]∗ (3.5)

for the odd-frequency pairing. In the following, we consider a homogeneous
ferromagnet/superconductor junctions with the exchange field h in a ferro-
magnet and focus on the Cooper pairs with Sz = 0. In this case, it is possible
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to remove the external phase of the pair potential in the superconductor. We
will concentrate on the retarded part of the Green’s function.

We consider a junction consisting of a normal (N) and a superconducting
reservoirs connected by a quasi-one-dimensional diffusive ferromagnet (DF)
with a length L much larger than the mean free path as shown in Fig. 1.|}~� ������������ �����������

������ ����� |� � ��������������������� ��
� �� |}~� � ���������� �����������

������ ����� |� � ��������������������¡¡
Figure 3.1: Schematic illustration of DF /S junctions where DF is connected

to normal and superconducting reservoirs. (a)conventional spin-
singlet s-wave superconductor and (b)spin-triplet p-wave super-
conductor junctions.

The interface between the DF and the superconductor (S) at x = L
has a resistance Rb and the N/DF interface at x = 0 has a resistance
R′

b. The Green’s function in the superconductor can be parameterized as
g±(ε)τ̂3 + f±(ε)τ̂2 using Pauli’s matrices, where the subscript +(−) denotes
the right (left) going quasiparticles. g±(ε) and f±(ε) are given by g+(ε) ≡
gR
↑,↑(r, ε,p) = gR

↓,↓(r, ε,p), g−(ε) ≡ gR
↑,↑(r, ε, p̄) = gR

↓,↓(r, ε, p̄), f+(ε) ≡ fR
↑,↓(r, ε,p),

and f−(ε) ≡ fR
↑,↓(r, ε, p̄), respectively, with p̄ = p̄F/ | pF | and p̄F =

(−pFx, pFy). Using the relations (3.4) and (3.5), we obtain that f±(ε) =
[f±(−ε)]∗ for the even-frequency pairing and f±(ε) = −[f±(−ε)]∗ for the
odd-frequency pairing, respectively, while g±(ε) = [g±(−ε)]∗ in both cases.
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In the DF region, only the s-wave even-parity pairing state is allowed
due to isotropization by impurity scattering. The resulting Green’s func-
tion with majority and minority spin in the DF can be parameterized by
cos θτ̂3 + sin θτ̂2 and cos θ̄τ̂3 + sin θ̄τ̂2 in a junction with an even-parity su-
perconductor respectively. On the other hand, for odd-parity superconduc-
tor, the corresponding quantities for majority spin and minority spin are
expressed by cos θτ̂3 + sin θτ̂1 and cos θ̄τ̂3 + sin θ̄τ̂1 respectively.

The function θ satisfies the Usadel equation [36]

D
∂2θ

∂x2
+ 2i(ε+ h) sin θ = 0 (3.6)

with the boundary conditions at the DF/S interface [27, 37]

L

Rd
(
∂θ

∂x
) |x=L=

〈F1〉
Rb

, (3.7)

F1 =
2T1(fS cos θL − gS sin θL)

2 − T1 + T1(cos θLgS + sin θLfS)
(3.8)

and at the N/DF interface

L

Rd
(
∂θ

∂x
) |x=0= −〈F2〉

R′
b

, F2 =
2T2 sin θ0

2 − T2 + T2 cos θ0
, (3.9)

respectively, with θL = θ |x=L and θ0 = θ |x=0. Here, Rd and D are the
resistance and the diffusion constant in the DF, respectively. Function gS

is given by gS = (g+ + g−)/(1 + g+g− + f+f−) and fS = (f+ + f−)/(1 +
g+g− + f+f−) for the even-parity pairing and fS = i(f+g− − f−g+)/(1 +
g+g−+f+f−) for the odd-parity pairing, respectively, with g± = ε/

√
ε2 − ∆2

±,

f± = ∆±/
√

∆2
± − ε2 and ∆± = ∆Ψ(φ±) where Ψ(φ±) is the form factor

with φ+ = φ and φ− = π − φ. The brackets 〈. . . 〉 denote averaging over the
injection angle φ:

〈F1(2)(φ)〉 =

∫ π/2

−π/2

dφ cos φF1(2)(φ)/

∫ π/2

−π/2

dφT1(2) cosφ, (3.10)

T1 =
4cos2 φ

Z2 + 4cos2 φ
, T2 =

4cos2 φ

Z ′2 + 4cos2 φ
, (3.11)

where T1,2 are the transmission probabilities, Z and Z ′ are the barrier pa-
rameters for two interfaces.
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The resistance at the interface R
(′)
b is given by

R
(′)
b =

2R
(′)
0∫ π/2

−π/2
dφT1(2)(φ) cosφ

.

Here, R
(′)
b denotes Rb or R′

b, and R
(′)
0 is Sharvin resistance, which in three-

dimensional case is given by R
(′)
0 = 4π2/(e2k2

FS
(′)
c ), where kF is the Fermi

wave-vector and S
(′)
c is the constriction area.

Next, we focus on the Green’s function of minority spin. The function θ̄
satisfies the following equation [36]:

D
∂2θ̄

∂x2
+ 2i(ε− h) sin θ̄ = 0 (3.12)

with the boundary condition at the DF/S interface [27, 37]

L

Rd
(
∂θ̄

∂x
) |x=L=

〈F̄1〉
Rb

. (3.13)

Here, F̄1 is given by

F̄1 =
2T1(fS cos θ̄L − gS sin θ̄L)

2 − T1 + T1(cos θ̄LgS + sin θ̄LfS)
(3.14)

for spin-triplet superconductor and

F̄1 =
2T1(−fS cos θ̄L − gS sin θ̄L)

2 − T1 + T1(cos θ̄LgS − sin θ̄LfS)
(3.15)

for spin-singlet superconductor respectively. At the N/DF interface, the
boundary condition reads

L

Rd
(
∂θ̄

∂x
) |x=0= −〈F̄2〉

R′
b

, F̄2 =
2T2 sin θ̄0

2 − T2 + T2 cos θ̄0

. (3.16)

Here θ̄L = θ̄ |x=L and θ̄0 = θ̄ |x=0.
Equations (3.12) and (3.13) can be transformed to

D
∂2θ̄∗(−ε)
∂x2

+ 2i(ε+ h) sin θ̄∗(−ε) = 0 (3.17)

L

Rd
(
∂θ̄∗(−ε)
∂x

) |x=L=
〈F̄ ∗

1 (−ε)〉
Rb

, (3.18)
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L

Rd
(
∂θ̄∗(−ε)
∂x

) |x=0= −〈F̄ ∗
2 (−ε)〉
R′

b

. (3.19)

The pair amplitude is defined as

f3(ε) = (sin θ − sin θ̄)/2 (3.20)

in the spin-singlet case and as

f0(ε) = (sin θ + sin θ̄)/2 (3.21)

in the spin-triplet case.
Since only an even-parity s-wave pairing can exist in the DF due to the

impurity scattering, f3 and f0 belong to the ESE and OTE state, respectively.
In the following, we will consider four possible symmetry classes of su-

perconductivity in the junction, consistent with the Pauli’s principle: ESE,
ETO, OTE and OSO pairing states.

(1) Junction with ESE superconductor
In this case, f±(ε) = f∗

±(−ε) and g±(ε) = g∗±(−ε) are satisfied. Then,
fS(−ε) = f∗

S(ε) = f∗
S and gS(−ε) = g∗S(ε) = g∗S and we obtain for F̄ ∗

1 (−ε)

F̄ ∗
1 (−ε) =

2T1[−fS cos θ̄∗L(−ε) − gS sin θ̄∗L(−ε)]
2 − T1 + T1[cos θ̄∗L(−ε)gS − sin θ̄∗L(−ε)fS]

.

It follows from a comparison of Eqs. 3.6-3.9 with Eqs. 3.17-3.19 that these
equations are consistent with each other only when sin θ̄∗(−ε) = − sin θ(ε)
and cos θ̄∗(−ε) = cos θ(ε). After simple calculation, we can show f3(ε) =
f∗

3 (−ε) and f0(ε) = −f∗
0 (−ε). This relation is consistent with the fact [25]

that f3 and f0 are the even-frequency and odd-frequency pairing state, re-
spectively. When h=0, since sin θ(ε) = − sin θ̄(ε) is satisfied, the resulting
f0 is vanishing and only the ESE state exist. For h 6= 0, f0 becomes nonzero
and the OTE state is generated in DF.

(2) Junction with ETO superconductor
Now we have f±(ε) = f∗

±(−ε) and g±(ε) = g∗±(−ε). Then, fS(−ε) =
−f∗

S(ε) = −f∗
S and gS(−ε) = g∗S(ε) = g∗S . As a result, F̄ ∗

1 (−ε) is given by

F̄ ∗
1 (−ε) = − 2T1[fS cos θ̄∗L(−ε) + gS sin θ̄∗L(−ε)]

2 − T1 + T1[cos θ̄∗L(−ε)gS − sin θ̄∗L(−ε)fS]
.

Eqs. 3.6-3.9 and Eqs. 3.17-3.19 are consistent if sin θ∗(−ε) = − sin θ̄(ε)
and cos θ∗(−ε) = cos θ̄(ε). As in the case of ESE pairing, we can show
f3(ε) = f∗

3 (−ε) and f0(ε) = −f∗
0 (−ε). For h = 0, OTE state is generated in
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the DF as shown in Ref. [25]. The ESE state is generated by h, in contrast
to the case of DF/ESE superconductor junctions.

(3) Junction with OTE superconductor

In this case f±(ε) = −f∗
±(−ε) and g±(ε) = g∗±(−ε). Then fS(−ε) =

−f∗
S(ε) and gS(−ε) = g∗S(ε) and one can show that F̄ ∗

1 (−ε) has the same form
as in the case of ESE and ETO superconductor junctions. Then, we obtain
sin θ̄∗(−ε) = − sin θ(ε) and cos θ̄∗(−ε) = cos θ(ε). Also f3(ε) = f∗

3 (−ε) and
f0(ε) = −f∗

0 (−ε) are satisfied. For h = 0, only the OTE pairing state
is generated in DF. Similar to the case of ETO junctions, ESE pairing is
induced in the presence of h.

(4) Junction with OSO superconductor

We have f±(ε) = −f∗
±(−ε), g±(ε) = g∗±(−ε), fS(−ε) = f∗

S(ε), and
gS(−ε) = g∗S(ε). One can show that F̄ ∗

1 (−ε) takes the same form as in
the cases of ESE, ETO, OTE superconductor junctions. Then, we obtain
sin θ̄∗(−ε) = − sin θ(ε) and cos θ̄∗(−ε) = cos θ(ε). Also f3(ε) = f∗

3 (−ε) and
f0(ε) = −f∗

0 (−ε) are satisfied. For h = 0, only the ESE pairing state is gen-
erated in DF. Similar to the case of ETO junctions, OTE pairing is induced
in the presence of h.

We can now summarize the above results in the table below. As seen
from the above discussion, sin θ̄∗(−ε) = − sin θ(ε), cos θ̄∗(−ε) = cos θ(ε),
f3(ε) = f∗

3 (−ε) and f0(ε) = −f∗
0 (−ε) are satisfied for all cases. The real part

of f3 is an even function of ε while the imaginary part of it is an odd function
of ε consistent with even-frequency pairing. On the other hand, the real part
of f0 is an odd function of ε while its imaginary part is an even function of
ε consistent with odd-frequency pairing.
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Symmetry of
the pairing in
superconduc-
tors

Symmetry of
the pairing in
DF without
exchange field

Symmetry of
the pairing in
DF

(1) Even-
frequency
spin-singlet
even-parity
(ESE)

ESE ESE + OTE

(2) Even-
frequency
spin-triplet
odd-parity
(ETO)

OTE OTE + ESE

(3) Odd-
frequency
spin-triplet
even-parity
(OTE)

OTE OTE + ESE

(4) Odd-
frequency
spin-singlet
odd-parity
(OSO)

ESE ESE + OTE

Within this formulation, the LDOS in the DF layer is given by

N/N0 =
1

2
(Re cos θ + Re cos θ̄) (3.22)

where N0 denotes the LDOS in the normal state. Below we will calculate f3,
f0 and LDOS at zero temperature. For this purpose, we will use the following
parameter set Z = 3, Z ′ = 3, ETh ≡ D/L2 = 0.1∆ and Rd/R

′
b = 0.1,

which represents a typical DF/S junction. Our qualitative conclusions are
not sensitive to the parameter choice.

3.3 Results

In the following, we will study two typical cases. As an example of ESE su-
perconductor, the conventional spin-singlet s-wave pairing will be considered.
We will clarify the generation of OTE pairing in DF by the exchange field
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h consistent with preexisting results [13, 2]. We will also study spin-triplet
p-wave superconductor as a typical example of ETO superconductor. In this
case, ESE pairing state is induced by h. It should be remarked again that f3

and f0 denote the ESE and OTE pairing amplitudes, respectively.

3.3.1 Spin singlet s-wave superconductor junctions

Let us first study DF/spin-singlet s-wave superconductor junctions where we
choose Rd/Rb = 1 and the form factor Ψ± is given by Ψ± = 1. Real and
imaginary parts of f3 and f0 at x = 0 for various h/∆ are shown in Fig.
3.2. Without exchange field, i.e., h = 0, only the f3 is nonzero, consistent
with conventional theory of proximity effect [38, 39, 37]. By introducing¢£¤ ¥
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Figure 3.2: Real (a) and imaginary (b) parts of f3, and real (c) and imaginary
(d) parts of f0 in spin-singlet s-wave superconductor junctions.
We choose Rd/Rb = 1.

the exchange field h, the magnitude of f3 is suppressed for small ε while it
is enhanced for large ε as shown in Figs. 3.2(a) and 3.2(b). On the other
hand, the imaginary part of f0 is enhanced for small magnitude of ε. The
corresponding LDOS at N/DF interface normalized by its value in the normal
state is plotted as a function of ε in Fig. 3.3. The LDOS has a minigap at
h = 0 [38, 39]. As shown in Fig. 3.3, the LDOS is influenced crucially by
h. A peak appears at zero energy with h/∆ = 0.05. In this case Imf0 has a
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large value at zero energy as shown in Fig. 3.2(d). Thus large magnitude of
Imf0 at ε = 0 is responsible for the peak of the LDOS.

It was shown in the previous chapter that the condition for the formation
of ZEP in the LDOS is given by ETh ∼ 2hRb/Rd. This condition is consistent
with the results shown in Fig. 3. As shown in Fig. 3.2, when this condition
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Figure 3.3: Normalized LDOS as a function of ε for Rd/Rb = 1 with various

h/∆ in spin-singlet s-wave superconductor junctions.

is satisfied, Imf0 has a large value at the zero energy. Thus it corresponds to
the generation of the odd-frequency pairing amplitude f0 at low energy. The
spatial dependences of the pair amplitudes f3 and f0 at ε = 0 are shown in
Fig. 3.4. The amplitude of f3 is dominant near the DF/S interface while the
magnitude of f0 is enhanced at the N/DF interface.

Let us study the crossover between spin-singlet and spin-triplet pairing
states. We show f3 and f0 as a function of h for ε = 0 at (a) x = 0, (b)
x = L/2 and (c) x = L in Fig. 3.5. f0 increases from zero with h. At a
certain value of h, f0 has a maximum. If the value of h is larger than this
value, the triplet component becomes dominant as shown in Fig. 3.5(a) and
Fig. 3.5(b). The value of h at the crossover regime is given by the minigap
in DN/S junctions. Let us discuss this regime in more detail. As shown in
section II, sin θ̄(ε) = − sin θ∗(−ε) and cos θ̄(ε) = cos θ∗(−ε) are satisfied for
any case. Then the ESE and OTE pair wave functions in the DF are given
by

f3(ε) = [sin θ(ε) + sin θ∗(−ε)]/2, (3.23)

f0(ε) = [sin θ(ε) − sin θ∗(−ε)]/2. (3.24)
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Figure 3.4: Spatial dependence of the pair amplitudes f3 and f0 in DF for
ε = 0 in spin-singlet s-wave superconductor junctions. For ε = 0,
Imf3 = 0 and Ref0 = 0 are satisfied.

At ε = 0, we denote θ(0) = Reθ(0) + iImθ(0), where Reθ(0) and Imθ(0)
are the real and imaginary part of θ(0). Then f3(0) and f0(0) are given by
cosh[Imθ(0)] sin[Reθ(0)] and i sinh[Imθ(0)] cos[Reθ(0)]. Thus the following
equation is satisfied:

f3(0)

f0(0)
=

tan Reθ(0)

i tanh Imθ(0)
. (3.25)

It is easy to show that |Reθ(0)| < |Imθ(0)| is satisfied when the crossover
occurs, i.e., tan Reθ(0) = tanh Imθ(0). As shown in the previous chapter, this
inequality is satisfied when the exchange field is of the order of the minigap
energy in DN/S junctions, i.e., h ∼ (Rd/Rb)(ETh/2). Therefore the crossover
occurs around this value of the exchange field.

3.3.2 Spin-triplet p-wave superconductor junctions

Next we focus on the DF / spin-triplet p-wave superconductor junctions,
where we choose Rd/Rb = 0.1 and the form factor Ψ± is given by Ψ± =
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± cosφ corresponding to the case of α = 0 (see Fig. 3.1). In order to make
numerical calculations stable, we introduce a small imaginary number in the
quasiparticle energy: ε → ε + iγ, with γ = 0.01∆. The real and imaginary
parts of f3 and f0 at x = 0 are plotted in Fig. 3.6 for various h/∆. Similar
to the case of DN/s-wave superconductor junctions, the imaginary part of
f3 and the real part of f0 vanish at ε = 0. For h=0, f3 = 0 and only f0 is
nonzero as shown in Fig. 3.6. The feature of this unusual proximity effect[27]
was already discussed in Ref. [25], where OTE pairing state is generated in
the DN of DN/ETO superconductor junctions. In this case, the LDOS has a
ZEP and odd-frequency component f0 becomes a purely imaginary number
at ε = 0. With increasing h, the amplitude of f3 is enhanced as shown in
Figs. 3.6(a) and 3.6(b), in contrast to the case of DN/spin-singlet s-wave
superconductor junctions. At the same time, the magnitude of f0 near the
zero energy is suppressed. Then the features of the proximity effect in DF
are the same as in conventional superconductor junctions. The corresponding
LDOS normalized by its value in the normal state is plotted as a function of
ε in Fig. 3.7. With the increase of h, the magnitude of LDOS at ε = 0 is
suppressed and the LDOS peak is splitted. The magnitude of the splitting
increases with the increase of h. Note that the peak positions in Imf0 and
LDOS coincide with each other. The spatial dependences of the real part
of f3 and the imaginary part of f0 at ε = 0 are shown in Fig. 3.8. For
h = 0, f3 is absent and the magnitude of the imaginary part of f0 reaches
its maximum at the DF/S interface. With the increase of h, the amplitude
of f0 is drastically reduced. The spatial dependence of f3 is rather weak and
its amplitude is most strongly enhanced for h = 0.05∆. At the same time,
the magnitude of LDOS at ε = 0 is most strongly suppressed (see Fig. 3.7).

Before ending this subsection, we investigate the crossover between singlet
and triplet pairing states. Let us plot f3 and f0 for ε = 0 as a function of
h at (a) x = 0, (b) x = L/2 and (c) x = L in Fig. 3.9. f3 has a maximum
at a certain value of h. When h exceeds this value, the singlet component
becomes dominant as shown in Fig. 3.9. The value of h at the crossover
increases with the increase of Z, Rd/Rb and ETh, i.e., with the enhancement
of the proximity effect.
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Figure 3.5: The pair amplitudes f3 and f0 as a function of h in DF for ε = 0

in spin-singlet s-wave superconductor junctions. (a) x = 0. (b)
x = L/2. (c) x = L.
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tions. Real (a) and imaginary (b) parts of f3. Real (c) and imag-
inary (d) parts of f0. Here we choose Rd/Rb = 0.1.
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Figure 3.7: Normalized LDOS as a function of ε for Rd/Rb = 0.1 and various
h/∆ in p-wave superconductor junctions.
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Figure 3.8: Spatial dependence of the pair amplitudes f3 and f0 in DF for
ε = 0 in p-wave superconductor junctions. For ε = 0, Imf3 = 0
and Ref0 = 0 are satisfied.
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Figure 3.9: The pair amplitudes f0 and f3 as a function of h in DF for ε = 0
in p-wave superconductor junctions. (a) x = 0. (b) x = L/2. (c)
x = L.
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3.3.3 Relevance of the odd-frequency component to
ZEP of LDOS

Let us discuss the relation between the generation of the odd-frequency pair-
ing and ZEP in LDOS, using general properties of solutions of the proximity
effect problem. Since cos θ̄(ε) = cos θ∗(−ε) are satisfied, the LDOS normal-
ized by its value in the normal state is given by

N/N0 = [cos θ(ε) + cos θ∗(−ε)]/2. (3.26)

For ε = 0, the normalized LDOS reads cosh[Imθ(0)] cos[Reθ(0)], while
f3(0) and f0(0) are given by cosh[Imθ(0)] sin[Reθ(0)] and i sinh[Imθ(0)] cos[Reθ(0)]
respectively. As seen from these relations, f0 becomes zero when the LDOS
is zero. In addition, whether the spin-singlet component f3 dominates the
spin-triplet component f0 or not crucially depends on the value of Reθ(0).
The most favorable condition where N/N0 is enhanced is the large magnitude
of Imθ(0) and the absence of Reθ(0), where f0 dominates f3. For the suffi-
ciently large magnitude of Imθ(0) and small magnitude of Reθ(0), N/N0 ∼
cos[Reθ(0)] exp[Imθ(0)]/2 ∼ exp[Imθ(0)]/2 and f0(0) ∼ i cos[Reθ(0)] exp[Imθ(0)]/2 ∼
i exp[Imθ(0)]/2 are satisfied. Then we obtain N/N0 ∼ −if0(0). This means
that the generation of the odd-frequency pair amplitude f0(0) leads to the
enhancement of the density of states at zero energy.

3.4 Conclusions

We have studied the proximity effect in diffusive ferromagnet (DF) / super-
conductor (S) junctions. Various possible symmetry classes in a supercon-
ductor were considered which are consistent with the Pauli’s principle: even-
frequency spin-singlet even-parity (ESE) state, even-frequency spin-triplet
odd-parity (ETO) state, odd-frequency spin-triplet even-parity (OTE) state
and odd-frequency spin-singlet odd-parity (OSO) state. As was established
in the previous work [25], in the absence of the exchange field the induced
pair amplitude in a DF belongs respectively to ESE, OTE, OTE and ESE
pairing states. It is shown in the present chapter that, in addition to these
states, the OTE, ESE, ESE and OTE pairing states are generated in DF in
the presence of the exchange field h.

As a typical example of ESE superconductor, we have chosen spin-singlet
s-wave state. We have clarified that when the OTE state dominates the ESE
state in the DF, the resulting LDOS has a zero energy peak. At the same
time, the amplitude of the OTE pair wave function near the N/DF interface
is enhanced at zero energy. As suggested by our findings, the odd-frequency
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pairing state was possibly realized in the experiment by Kontos[5], where the
ZEP was observed in ferromagnet / s-wave superconductor junctions.

We have also studied spin-triplet p-wave superconductor junctions. In this
case, the ZEP in the LDOS splits into two peaks due to the generation of
the ESE pairing state by the exchange field. The features of proximity effect
specific to spin-triplet p-wave superconductor junctions can be studied in
experiments with Sr2RuO4-Sr3Ru2O7 eutectic system [40]. Based on general
properties of solutions of the proximity effect problem, we have demonstrated
that the generation of the odd-frequency pairing state at zero energy leads
to the ZEP in LDOS.
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Chapter 4

Odd-frequency pairing state
inside the Abrikosov vortex
core

4.1 Introduction

Generally, superconducting pairing is classified into even-frequency or odd-
frequency state according to a symmetry with respect to time. Due to the
Fermi statistics, even-frequency superconductors belong to the symmetry
class of spin-singlet even-parity or spin-triplet odd-parity pairing state, while
odd-frequency superconductors belong to the spin-singlet odd-parity or spin-
triplet even-parity pairing state.

The possibility of the odd-frequency pairing state in various kinds of
uniform systems was discussed in Refs. [1, 2, 3, 4, 5], albeit its realiza-
tion in bulk materials is still controversial. On the other hand, the re-
alization of the odd-frequency pairing state in inhomogeneous supercon-
ducting systems has recently been proposed. It is established that odd-
frequency pairing is induced due to symmetry breaking in such systems. In
ferromanget/superconductor junctions, odd-frequency pairing emerges due
to the broken symmetry in a spin space.[6, 7] It was recently realized that
proximity-induced odd-frequency pairing may also be generated near normal
metal/superconductor interfaces due to the breakdown of translational sym-
metry [8] or in a diffusive normal metal attached to a triplet superconductor.[9]

Since an Abrikosov vortex breaks translational symmetry in a supercon-
ductor, one may expect the emergence of an odd-frequency unconventional
pairing state with higher angular momentum around the vortex core even in a
conventional s-wave superconductor. This issue is addressed in this chapter.
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The study of the mixed state in type-II superconductors, where magnetic
flux enters a sample in the form of quantized vortices, has a long history
and revealed a variety of physical phenomena.[10, 11, 12, 13, 14, 15] In the
clean limit, low-energy bound states, called the Andreev bound states, are
generated in the vortex core due to the spatial structure of the supercon-
ducting pair potential. [16, 17, 18, 19, 20, 21] One of the manifestations of
the bound states is the enhancement of zero-energy quasiparticle density of
states (DOS) locally in the core, observable as a zero-bias conductance peak
by scanning tunneling spectroscopy (STM).[17, 22]

In this chapter, based on the quasiclassical theory of superconductivity,
we study pairing symmetry around an Abrikosov vortex in a clean supercon-
ductor. We find that, quite unexpectedly, only odd-frequency spin-singlet
chiral p-wave pairing is allowed at the center of the core in s-wave supercon-
ductor. That means that the emergence of the odd-frequency pairing is a
physical reason of zero energy peak in the local DOS inside the core. Based
on these results, we propose the experimental setup to verify the existence
of odd-frequency pairing in bulk materials using superconducting STM.

4.2 Formulation

The electronic structure of the vortex core in a single Abrikosov vortex in a
clean superconductor is described by the quasiclassical Eilenberger equations.[23,
24] For the calculation of the Green’s functions in the vicinity of the vortex, it
is necessary to find numerically stable solutions of the Eilenberger equations.
For this purpose, we use the Riccati parametrization of the quasiclassical
propagator [25]. Along a trajectory r(x′) = r0 + x′ v̂F with unit vector v̂F

parallel to vF , the Eilenberger equations are generally represented in 4×4 ma-
trix form.[26] For the s-wave superconductor with ∆̂ = ∆σy (σy is a Pauli’s
matrix in spin space), these equations are reduced to the set of two decoupled
differential equations of the Riccati type for the functions a(x′) and b(x′)

~vF∂x′a(x′) +
[
2ǫn + ∆†a(x′)

]
a(x′) −∆ = 0,

~vF∂x′b(x′) − [2ǫn + ∆b(x′)] b(x′) + ∆† = 0 (4.1)

where iǫn are the Matsubara frequencies. For simple case of a cylindrical
Fermi surface, the Fermi velocity can be written as vF = vF (e1 cos θ +
e2 sin θ).

We choose the following form of the pair potential which accurately de-
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scribes the behavior around the vortex:

∆(r) = ∆0 tanh

(√
x2 + y2

ξ

)
x+ iy√
x2 + y2

≡ ∆0 tanh

(√
x2 + y2

ξ

)
exp(iϕ). (4.2)

Here, we introduce the coherence length ξ = ~vF/∆0, the center of a vortex
is situated at x = y = 0 and exp(iϕ) is the phase factor which originates
from the vortex.

For ǫn > 0 the Riccati equations have to be solved using the bulk values
as initial values at x = ±∞. Then, we obtain anomalous Green’s function f
as

f = − 2a

1 + ab
. (4.3)

For the calculation of the normalized local DOS by its value in the normal
state, the quasiclassical propagator has to be integrated over the angle θ
which defines the direction of the Fermi velocity. The normalized local DOS
in terms of functions a and b is given by

N(r0, E) =

∫ 2π

0

dθ

2π
Re

[
1 − ab

1 + ab

]

iǫn→E+iδ

, (4.4)

where E denotes the quasiparticle energy with respect to the Fermi level and
δ is an effective scattering parameter that corresponds to an inverse mean
free path. In numerical calculations throughout this chapter, we will fix this
value as δ = 0.1∆0. Further, in what follows, the origin O of our coordinate
system is placed at the center of the vortex core.

4.3 Results

First, we study local DOS around the vortex at E = 0. The results of
calculations are shown Fig. 4.1 (a). As is well known, zero energy peak
appears in the core. The energy dependence of local DOS at x = y = 0
shown in Fig. 4.1 (b) exhibits a strong zero energy peak.

Due to the broken translational symmetry of the system, unconventional
pairing states with higher angular momentum are expected to emerge around
the vortex. In order to study possible pairing states around the vortex, let
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us decompose anomalous Green’s function f into various angular momentum
components as follows

f ∼= fs + fpx cos θ + fpy sin θ + fdx2−y2 cos 2θ

+fdxy sin 2θ + ff1 cos 3θ + ff2 sin 3θ + ..... (4.5)

Note that all the above pairing components are singlet. Their spatial depen-
dencies at E = 0 are shown in Figure 4.2. Interestingly, only odd-frequency
spin-singlet odd-parity pairings, Refpx and Imfpy, may exist at the center of
the core. With the increase of the distance from the core center, the magni-
tudes of anomalous Green’s functions decrease rapidly, except for s-wave one.
Note that other angular momentum components not shown in this figure are
negligibly small.

Figure 4.3 shows the decomposition of the p-wave pair amplitude at the
center of the core x = y = 0 as a function of energy. Note that other pairing
amplitudes are absent at x = y = 0 for all E. The relations Refpx = Imfpy

and Imfpx = −Refpy are satisfied for all E, as illustrated on the figure.
Therefore, the following representation of anomalous Green’s function f holds
at the center of the core:

f = (Refpx + iImfpx) (cos θ + i sin θ) = fpx exp(iθ). (4.6)

We see that anomalous Green’s function at the core center has the same an-
gular dependence as the gap function. This fact can be explained as follows.
If we consider a pure phase vortex located at x = y = 0, then the gap func-
tion has the form ∆(r) = ∆0 exp(iϕ). In this case, one can obtain simple
analytical solution of the Eilenberger equations at x = y = 0 in the form

f = −∆0 exp(iϕ)√
∆2

0 + ǫ2n
=

∆0 exp(iθ)√
∆2

0 + ǫ2n
(4.7)

since the relation ϕ = θ+π holds on a trajectory passing through the center
of the vortex. The above solution shows that only chiral p-wave pairing state
is induced at the vortex center due to the phase winding.

The enhancement of the local DOS in the presence of odd-frequency pair-
ing can be understood by using the normalization condition for the Green’s
functions g2 + ff̄ = 1. Indeed, since for the odd-frequency pairing state
the anomalous Green’s function f̄ = −2b/(1 + ab) at E = 0 is given by
f̄(θ) = −f∗(θ) (see Ref.[26]) and local DOS is given by N(E) = −Reg, one
can show that generally N(E = 0) > 1. That means that the emergence
of the odd-frequency pairing is a physical reason of zero energy peak of the
local DOS inside the core.
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For a chiral superconductor with angular momentum l and a vortex with
vorticity m (∆(θ) ∝ ∆0 exp(ilθ + imϕ)), we find that anomalous Green’s
function is given by f ∝ exp(i(l+m)θ) at the vortex center, in a similar way.
For an odd integer m, in accordance with Fermi statistics, an induced pair-
ing component at the vortex center has different parity and hence different
symmetry with respect to frequency from those in the bulk superconductor.
Now, let us show example with l = 1 (p-wave) and m = ±1 in Fig. 4.4. As
shown in (a), only odd-frequency spin-triplet d-wave pairing can survive at
the core center for l = m = 1, while only odd-frequency spin-triplet s-wave
pairing can survive at the core center for l = −m = 1 as shown in (b).

For l = 0, i.e. in conventional s-wave case, there have been several studies
of multi-vortex state with m ≥ 1 [27, 28]. It was shown that zero energy peak
only appears at the votex center for odd number m [28]. This statement is
consistent with our result for l = 0 because odd-frequency pairing state is
generated only for odd integer m.
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Figure 4.1: (a) Normalized local DOS around the core at E = 0. The center
of the vortex is situated at x = y = 0. (b) The dependence of
local DOS on quasiparticle energy at x = y = 0. Zero energy
peak of the local DOS is seen.
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Figure 4.2: Spatial dependencies of various pairing components at E = 0.

(a) even-frequency spin-singlet even-parity component, (b) odd-
frequency spin-singlet odd-parity component. Odd-frequency
spin-singlet odd-parity components, Refpx and Imfpy, can exist
inside the core (near x = 0).
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Figure 4.3: p-wave pairing components at x = y = 0 as a function of energy
E. The relations Refpx = Imfpy and Imfpx = −Refpy hold for all
E.
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Figure 4.4: Spatial dependencies of various pairing components at E = 0
in chiral p-wave superconductors with (a) the same and (b) the
opposite chirality with that of the vortex. Odd-frequency spin-
triplet even-parity components can exist inside the core (near
x = 0).
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Figure 4.5: Suggested experimental setup to verify the existence of odd-
frequency pairing in bulk materials. Nonzero local Josephson
current is allowed at the core when superconducting STM tip
has odd-frequency spin-singlet odd-parity p-wave pairing. Here,
r =

√
x2 + y2.

Now, we propose an experimental setup to verify the existence of odd-
frequency pairing in bulk materials by using superconducting STM.[29] As
discussed above, only odd-frequency spin-singlet odd-parity p-wave pairing
state is allowed at the center of the vortex core in s-wave superconductor.
Therefore, using a superconductor as an STM tip and investigating its cou-
pling with the vortex state in an s-wave superconductor, one can detect a
pairing symmetry of the tip material. Local Josephson current measured in
STM experiment with superconducting tip is given by [30]

eIR = πT
∑

θ,ǫn

Im (f∗(θ, ǫn)fS(θ, ǫn)). (4.8)

Here, R is the junction resistance, T is temperature and fS is anomalous
Green’s function in the STM tip. It follows from this expression that finite
Josephson current is allowed only when superconducting STM has the same
symmetry as that of the vortex state in an s-wave superconductor. Other-
wise, summation over angle or Matsubara frequency results in zero current.
Therefore, finite Josephson current is allowed at the vortex core only when
superconducting STM has odd-frequency spin-singlet odd-parity p-wave pair-
ing. One can detect the presence of odd-frequency pairing by observing finite
current at the core and vanishing current far from the core. If the STM tip
is made of a conventional s-wave superconductor, the behavior is opposite:
the Josephson current vanishes at the core and is nonzero far from the core.
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The experimental setup is illustrated in Fig. 4.5. It was suggested in Refs.
[5, 31, 32] that odd-frequency spin-singlet odd-parity state could be real-
ized in CeCu2Si2 and CeRhIn5, and thus our prediction may help to identify
pairing symmetry in these materials.

Finally, we also propose an experimental setup to verify our finding. Our
theory predicts that only odd-frequency spin-triplet even-parity s-wave pair-
ing is allowed at the center of the vortex core in chiral p-wave superconductor,
realized in Sr2RuO4[35, 36], with a chirality opposite to that of the vortex,
as shown in Fig. 4.4 (b). It is established that odd-frequency spin-triplet
even-parity s-wave pairing pairing is also generated in half-metal/s-wave su-
perconductor junctions.[37] Then, using superconducting STM tip made of
half-metal attached to an s-wave superconductor, one may confirm the ex-
istence of odd frequency pairing at the core by observing finite Josephson
current with a similar experimental setup in Fig. 4.5. Note that if we use su-
perconducting STM tip made of conventional s-wave superconductor instead,
we cannot observe a zero Josephson current.

4.4 Conclusions

In this chapter, we have studied pairing symmetry inside the Abrikosov vor-
tex core in superconductors. We have shown that only odd-frequency spin-
singlet chiral p-wave pairing is allowed at the center of the core in s-wave
superconductors as a consequence of the broken translational symmetry. This
makes it possible to provide new interpretation of the Andreev bound states
inside the core as the manifestation of the odd-frequency pairing. This inter-
pretation is consistent with the experimental fact that the observed zero-bias
conductance peak by STM at a vortex center is very sensitive to disorder.
[33] We have also unveiled the sum rule that for a vortex with vorticity m
in a chiral superconductor with angular momentum l, anomalous Green’s
function at the vortex center has angular momentum l +m. Based on these
results, we have proposed the experimental setup to verify the existence of
odd-frequency pairing in bulk materials by using superconducting STM.

The relation between odd-frequency pairing and zero energy peak of local
DOS is quite general feature as already found in normal metal/superconductor
junctions[8, 9] or ferromagnet/superconductor junctions.[34] The interpreta-
tion of Abrikosov vortex as a manifestation of the odd-frequency pairs may
become a useful concept to explore new features in the vortex physics.

113





Bibliography

[1] V. L. Berezinskii, JETP Lett. 20, 287 (1974)

[2] A. Balatsky and E. Abrahams, Phys. Rev. B 45, 13125 (1992); E. Abra-
hams, A. Balatsky, D. J. Scalapino and J. R. Schrieffer, Phys. Rev. B
52, 1271 (1995).

[3] P. Coleman, E. Miranda, and A. Tsvelik, Phys. Rev. Lett. 70, 2960
(1993); Phys. Rev. B 49, 8955 (1994); Phys. Rev. Lett. 74, 1653 (1995).

[4] M. Vojta and E. Dagotto, Phys. Rev. B 59, R713 (1999).

[5] Y. Fuseya, H. Kohno and K. Miyake, J. Phys. Soc. Jpn. 72, 2914 (2003).

[6] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett. 86,
4096 (2001); F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod.
Phys. 77, 1321 (2005).

[7] A. Kadigrobov, R. I. Shekter and M. Jonson, EuroPhys. Lett. 90, 394
(2001).

[8] Y. Tanaka, A. A. Golubov, S. Kashiwaya, and M. Ueda, Phys. Rev.
Lett. 99, 037005 (2007). Y. Tanaka, Y. Tanuma and A. A. Golubov,
Phys. Rev. B 76, 054522 (2007).

[9] Y. Tanaka and A. A. Golubov, Phys. Rev. Lett. 98, 037003 (2007).

[10] A. L. Fetter and P. C. Hohenberg, in Superconductivity, edited by R. D.
Parks (Marcel Dekker, New York, 1969).

[11] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V.
M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

[12] E. H. Brandt, Rep. Prog. Phys. 58, 1465 (1995).

[13] Y. Morita, K. Kohmoto, and K. Maki, Int. J. Mod. Phys. B 12, 989
(1998).

115



[14] T. Maniv, V. Zhuravlev, I. Vagner, and P. Wyder, Rev. Mod. Phys. 73,
867 (2001).

[15] G. Blatter and V. B. Geshkenbein, in The Physics of Superconductors
Vol. 1, edited by K. H. Bennemann, J. B. Ketterson (Springer, 2003)

[16] C. Caroli, P. G. de Gennes and J. Matricon, Phys. Lett. 9, 307 (1964).

[17] H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr., and J. V.
Waszczak, Phys. Rev. Lett. 62, 214 (1989).

[18] Yu. G. Makhlin and G. E. Volovik, JETP Lett. 62, 737 (1995).

[19] A. I. Larkin and Yu. N. Ovchinnikov, Phys. Rev. B 57, 5457 (1998).

[20] N. B. Kopnin and G. E. Volovik, Phys. Rev. Lett. 79, 1377 (1997); Phys.
Rev. B 57, 8526 (1998).

[21] G. E. Volovik, JETP Lett. 70, 609 (1999).

[22] Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner,
Rev. Mod. Phys. 79, 353 (2007).

[23] G. Eilenberger, Z. Phys. 214, 195 (1968).

[24] A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 28, 1200 (1969).

[25] N. Schopohl and K. Maki, Phys. Rev. B 52, 490 (1995); N. Schopohl,
cond-mat/9804064 (unpublished).

[26] M. Eschrig, Phys. Rev. B 61, 9061 (2000).

[27] G. E. Volovik, JETP Lett. 57, 244 (1993); S. M. M. Virtanen and
M. M. Salomaa, Phys. Rev. B 60 14581 (1999).

[28] Y. Tanaka, H. Takayanagi and A. Hasegawa, Solid state Commun. 85,
321 (1993); A.S. Mel’nikov and V.M. Vinokur, Nature 415, 60 (2002).

[29] A. Kohen, Th. Proslier, T. Cren, Y. Noat, W. Sacks, H. Berger, and
D. Roditchev, Phys. Rev. Lett. 97, 027001 (2006); J.G. Rodrigo, H.
Suderow, and S. Vieiraa, Eur. Phys. J. B 40, 483 (2004).

[30] A.V. Zaitsev, Sov. Phys. JETP 59, 1015 (1984).

[31] S. Kawasaki, T. Mito, Y. Kawasaki, G.-q. Zheng, Y. Kitaoka, D. Aoki,
Y. Haga, and Y. Onuki, Phys. Rev. Lett. 91, 137001 (2003).

116



[32] Guo-qing Zheng, N. Yamaguchi, H. Kan, Y. Kitaoka, J. L. Sarrao, P. G.
Pagliuso, N. O. Moreno, and J. D. Thompson, Phys. Rev. B 70, 014511
(2004).

[33] C. Renner, A. D. Kent, P. Niedermann, Ø. Fischer, and F. Lévy, Phys.
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Chapter 5

Chirality sensitive effect on
surface state in chiral p-wave
superconductors

5.1 Introduction

Up to now, much attention has been paid to unconventional superconductors,
because they can exhibit a sign change of their gap function as a function
of momentum. This property induces many interesting phenomena, which
can be observed directly by so-called phase sensitive experiments providing
powerful tools to test the symmetry of the gap function [1]. One important
consequence of the sign change of the gap function is the possible existence
of Andreev bound states at the surface of the superconductor [2, 3, 4, 5,
6]. The formation of Andreev bound states increases the local zero-energy
quasiparticle density of states (DOS) at the surface, leading to a pronounced
zero-bias conductance peak in the tunneling conductance observable both
in singlet d-wave superconductors like the cuprates and in triplet p-wave
superconductors like Sr2RuO4 [6, 7, 8, 9, 10, 11]. For the case of d-wave
superconductors it is well-known, that an applied magnetic field or an applied
electric current result in a split of this zero-bias conductance peak, since the
zero-energy spectral weight of the bound states is effectively Doppler shifted
towards higher energies. The same effect also appears in the absence of
external magnetic fields for the scenario of an Abrikosov vortex, which is
pinned not far from the boundary. Here, the zero-energy DOS is suppressed
in a shadow-like region ”behind” the vortex [12, 13].

Another important aspect of unconventioal supercoductors is that they
can have a chirality of the pair potential. For example, Sr2RuO4 is known to
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have a chiral p-wave symmmetry: d = (0, 0, kx + iky).[14, 15, 16, 18, 17] The
vortices in chiral p-wave superconductors have been intensively studied. The
interplay between vorticity and chirality in the vicinity of the vortex core
is discussed in Ref. [19]. However, the study to explore phenomena which
directly reflect the characteristics of the chirality is insufficient, while spin or
phase sensitive phenomena have been intensively investigated.

In this chapter, we study the DOS in chiral p-wave superconductor in the
presence of an Abrikosov vortex in front of a specular surface, based on the
quasiclassical theory of superconductivity. We clarify that the DOS at the
shadow region of the vortex is sensitive to its chirality. When the chirality
is the same as (opposite to) that of the superconductor, the zero energy
peak (gap) of the DOS at the shadow region emerges. This is because the
DOS at the shadow region has a linear term of the vector potential. Based
on the results, we propose a chirality sensitive test on superconductors. In
contrast to spin sensitive test on superconductors (e.g., Knight shift[15]) or
phase one (e.g., SQUID[18, 20]), chirality sensitive test has not yet been
established. We think that our results contribute to the development of
physics of unconventional supercoductors with chirality.

5.2 Formulation

For the calculation of the local DOS in the vicinity of the boundary, it is
necessary to find numerically stable solutions of the Eilenberger equations [21,
22] that satisfy the appropriate boundary conditions at the specular surface.
For this purpose, we use the Riccati parametrization of the quasiclassical
propagator [23]. Along a trajectory r(x) = r0 + x v̂F with unit vector v̂F

parallel to vF , the Eilenberger equations are generally represented in 4×4
matrix form.[24] For the chiral p-wave superconductor with ∆̂ = ∆σx (σx

is a Pauli’s matrix in spin space), these equations are reduced to be a set
of two decoupled differential equations of the Riccati type for the functions
a(x) and b(x)[26]

~vF∂xa(x) +
[
2ǫ̃n + ∆†a(x)

]
a(x) −∆ = 0,

~vF∂xb(x) − [2ǫ̃n + ∆b(x)] b(x) + ∆† = 0 (5.1)

where iǫ̃n = iǫn + vF · e
c
A are shifted Matsubara frequencies. For the simple

case of a cylindrical Fermi surface, the Fermi velocity can be written as
vF = vF (e1 cos θ+e2 sin θ). The θ- and r-dependence of the pairing potential
∆ can be factorized in the form

∆(r, θ) = ∆0 exp(iθ)Ψ(r). (5.2)
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Here, Ψ is a phase factor which originates from the vortex. Near the boundary
and the center of the vortex, the pair potential has a spatial dependence in
general. However, it is known from the previous theories [12, 13] that if
we want to know the qualitative aspects of DOS in a shadow-like region,
we can assume that the magnitude of the gap is constant throughout the
superconductor.

With the condition that there are no currents flowing across the bound-
ary, we have the pairing potential around a vortex as Ψ(r) = eiΦ(r).[25] By
considering a vortex-antivortex pair, in analogy with the mirror method,
the phase Φ(r) is obtained as Φ(r) = arg(r − rV ) − arg(r − r̄V ) where
r̄V = rV − 2n̂〈n̂, rV 〉 with the position of the vortex rV and unit vector n̂

normal to the surface. The vortex chosen here corresponds to a pure phase
vortex. For our purpose, to obtain qualitative results of DOS of chiral p-wave
superconductor in the presence of the vortex, this simplification is reasonable.
[12, 13]

For ǫn > 0 the Riccati equations have to be solved using the bulk values
as initial values at x = ±∞

a(−∞) =
∆(−∞)

ǫn +
√
ǫ2n + |∆(−∞)|2

,

b(+∞) =
∆†(+∞)

ǫn +
√
ǫ2n + |∆(+∞)|2

. (5.3)

For the calculation of the normalized local DOS, the imaginary part of the
quasiclassical propagator has to be integrated over the angle θ that defines
the direction of the Fermi velocity. In terms of a and b, we have

N(r0, E) =

∫ 2π

0

dθ

2π
Re

[
1 − ab

1 + ab

]

iǫn→E+iδ

(5.4)

where E denotes the quasiparticle energy with respect to the Fermi level and
δ is an effective scattering parameter that corresponds to an inverse mean
free path. Throughtout this chapter, we fix this value as δ = 0.1∆0.

The sign change in the order parameter during the reflection at the surface
induces Andreev bound states and hence zero energy DOS on the surface are
enhanced. [5, 6, 26] The same sign change occurs on a trajectory passing
near the center of a vortex and therefore leads to similar localized Andreev
bound states inside the vortex core. The suppression of the amplitude of the
pairing potential around the vortex center does not change the calculated
result of the trapped state qualitatively.[27] The influence of the boundary for
anisotropic superconductors is included within the quasiclassical theory by
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the nonlinear boundary conditions for the quasiparticle propagator [28, 29].
For the Riccati parametrization, a substantial simplification occurs and an
explicit solution of the nonlinear boundary conditions can be found [30].

In the following, the origin O of our coordinate system is placed at the
boundary right between the vortex and the image vortex. The y-axis is
orientated parallel to the boundary. xV denotes the vortex position on the
x-axis and also measures the vortex to boundary distance. Furthermore it is
useful to introduce the coherence length ξ = ~vF/∆0 as the unit of a general
length scale.

5.3 Results

In what follows, we consider two cases: (a) chirality of p-wave superconductor
is the same as that of the vortex. (b) chirality of p-wave superconductor is
opposite to that of the vortex. In order to study the case (b), we have to
just replace Ψ by Ψ∗ in Eq. (5.2).

We study DOS at E = 0 in the presence of the vortex with (a) the same
chirality and (b) the opposite chirality in Fig. 5.1. A phase vortex is situated
at a distance of two coherence lengths xV = 2ξ from the surface. We find
that Andreev bound states formed at x = 0 are strongly modified by the
presence of the vortex: In (a), a sharpe peak appears at the shadow region
on the surface while a sharpe dip appears at the shadow region as shown in
(b). These features can be understood by the Doppler shift [5, 7, 31], which
is most remarkable in the shadow region. [12]

Let us explain this chirality sensitive phenomenon as follows. Now, we
consider the surface DOS of chiral p-wave superconductors in the presence of
a nearly homogeneous vector potential. Since we assume that the magnitude
of the gap is constant throughout the superconductor, solving differential
equations of the Riccati type numerically for given v̂F -direction is unnec-
essary in this case. We can calculate DOS on the surface analytically in
a straightforward way. Noting that a (b) is spatially independent for the
incoming (outgoing) trajectory [23], we obtain

N(E) = 2Re

〈
1

1 + ainbout

〉

iǫn→E+iδ

− 1 (5.5)

with ain = s∆0e
i(π−θ), bout = s∆0e

−iθ and the abbreviation s = 1/(ε̃n +√
ε̃2

n + ∆2
0). Furthermore, 〈...〉 denotes angular averaging, which we may

restrict to outgoing angles −π/2 ≤ θ ≤ π/2 only. Therefore, we have

N(E) = 2Re

〈
1

1 + (1 − 2ε̃nc)e−2iθ

〉

iǫn→E+iδ

− 1. (5.6)

122



Expanding the DOS at E = 0 in the vector potential A, we obtain in the
limit of δ → +0

N(E = 0) = 1 +
evF

c∆0
Ay + ..... (5.7)

An interesting aspect is that a linear term of the vector potential A survives.
This is because this term remains after angular averaging while, for s-, d- or
p-wave superconductors without chirality, we get similarly

N = C + 〈F (θ) sin θ〉Ay + ..... (5.8)

with a constant C and a function F which satisfies F (θ) = F (−θ). The co-
effient of the linear term is an odd function of the angle and hence vanishes by
angular averaging. The absence of odd order term in Ay reflects the presence
of inversion symmetry with respect to the x-y plane for these pairings. Since
the magnetic field is related to the vector poteintial as Bz = ∂Ay

∂x
, the zero

energy DOS depends on the sign of the magnetic field. Applying magnetic
field in a certain direction leads to the zero energy peak of the surface DOS,
while applying it in the opposite direction leads to the gap structure. Note
that the reversal of the magnetic field corresponds to that of the chirality of
the vortex.

Next, we study the DOS at x = 0 and E = 0 as a function of y in
the presence of the vortex with (a) the same chirality and (b) the opposite
chirality in Fig. 5.2. As xV increases, zero energy peak in (a) and zero
energy gap in (b) are suppressed, while the widths of them increase because
the effect of the vortex becomes weak.

Figure 5.3 exhibits the local DOS at the point x = y = 0 for different
vortex to boundary distances xV as a function of energy. If the Abrikosov
vortex is placed near the boundary, a remarkable zero energy peak and zero
energy gap emerge as shown in (a) and (b), respectively. With increasing
distance between vortex and boundary, these zero-energy anomalies are sup-
pressed. However, even for large distance xV = 10ξ apart from the surface,
these zero-energy anomalies are still visible.

Now, we investigate pairing symmetry on the surface of the supercon-
ductor. Near the surface, odd-frequency spin-triplet even-parity pairing is
expected to be generated due to the broken translational symmetry. [32]
Here, we study the chirality effect on the odd- and even-frequency pairings
at the shadow region. Figure 5.4 shows imaginary part of the odd-frequency
spin-triplet even-parity pairing fep and real part of the even-frequency spin-
triplet odd-parity pairing fop at the shadow point x = y = 0 and E = 0 as a
function of θ with (a) the same chirality and (b) the opposite chirality. fep

and fop are obtained as an even and odd part of anomalous Green’s functions
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f which is given by f = −2ia/(1 + ab) with respect to the transformation
θ → θ + π. As shown in (a), imaginary part of the even-parity pairing fep

dominates while real part of the odd-parity pairing fop is dominant in (b).
Note that real part of fep and imaginary part of fop are negligibly small. Since
anomalous Green’s function f̄ = 2ib/(1+ab) is given by f̄(θ) = −f∗(θ+π) at
E = 0, we obtain f̄ep(θ) = −f∗

ep(θ) and f̄op(θ) = f∗
op(θ). Thus, we can under-

stand that the local DOS is enhanced (reduced) by the presence of fep(fop)
by using normalization condition g2 + ff̄ = 1. Therefore, large magnitude
of the even-parity pairing fep (odd parity pairing fop ) is responsible for the
zero energy peak (gap) at the shadow region. See also Appendix.

To understand this result, we again analytically calculate anomalous
Green’s functions f on the surface in the presence of a nearly homogeneous
vector potential in a similar way of the calculation of the DOS by choosing
Ψ = 1 in Eq. (5.2). Expanding them at E = 0 with respect to the vector
potential, we obtain for 0 < θ < π/2, 3π/2 < θ < 2π (region A)

fep(θ ∈ A) = −2i cos θ +
2ievFAy

c∆0
cos2 θ, (5.9)

fop(θ ∈ A) =
cos 2θ

sin θ
− evFAy

c∆0

cos 2θ

tan θ
(5.10)

with δ → +0. For θ ∼ 0 we cannot take the limit δ → +0 from the first. For

θ → 0, we obtain fep = −2i
1−q

and fop = 2θ
(1−q)2

(
2 +

evF Ay

c∆0

)
with q = 1− 2δ/∆0

(δ → +0). Note that these pairings are all triplet. We find that a linear
term of the vector potential survives, which indicates that applied magnetic
field in a certain direction enhances the anomalous Green’s functions, while
the magnetic field in the opposite direction reduces them. Therefore, we
understand the dependence of imaginary part of fep and real part of fop on
the chirality of the vortex in Figs. 5.4 (a) and (b).

Based on our results, we can propose a chirality sensitive test on supercon-
ductors. It is expected that we can observe the enhancement (or suppression)
of the DOS on the surface applying a weak mangentic field on the surface of
a supercoductor, by using, e.g., a low-temperature scanning-tunneling spec-
troscopy (STS) [33, 34]. If we can observe the suppression (or enhancement
correspondingly) of the DOS on the surface by STS by reversing the direc-
tion of the applied magnetic field, we can conclude that the superconductor
has a chirality. This unusual reversal effect does not appear in non-chiral
superconductors. Moreover, the experiment allows us to detect the chirality
and possibly even the domains of different chirality, if domain walls reach
the surface. This idea is very promising since zero energy peak due to the
Andreev bound state has been observed by STS [6].
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Figure 5.1: DOS at E = 0 in the presence of the vortex with (a) the same

chirality and (b) the opposite chirality. The single Abrikosov
vortex can be found at a distance of two coherence lengths xV =
2ξ in front of the surface. Andreev bound states are formed at
x = 0.
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Figure 5.2: DOS at x = 0 and E = 0 for different vortex to boundary dis-
tances xV in the presence of the vortex with (a) the same chirality
and (b) the opposite chirality.
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Figure 5.3: Local DOS at the point x = y = 0 for different vortex to boundary
distances xV as a function of energy in the presence of the vortex
with (a) the same chirality and (b) the opposite chirality.
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Figure 5.4: Imaginary part of odd frequency spin-triplet even parity pairing

fep and real part of even frequency spin-triplet odd parity pairing
fop at the point x = y = 0 as a function of θ in the presence of the
vortex with (a) the same chirality and (b) the opposite chirality.
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5.4 Conclusions

In this chapter, we have studied the DOS in chiral p-wave superconductor in
the presence of an Abrikosov vortex in front of a specular surface, based on
the quasiclassical theory of superconductivity. We clarified that the DOS at
the shadow region of the vortex is sensitive to its chirality. When the chirality
is the same as (opposite to) that of the superconductor, the zero energy peak
(gap) of the DOS at the shadow region emerges. This is because the DOS
at the shadow region has a linear term of the vector potential. Based on the
results, we proposed chirality sensitive test on superconductors.

It is also worth noting that the modification of the surface quasiparticle
states due to the presence of vortices has an effect on the force acting on
vortices near the surface. An increase of the DOS leads to a repulsion of the
vortex from the boundary towards the bulk, whereas a decrease results in an
attraction towards the boundary. Thus, in both cases the Bean-Livingston
barrier would be modified, which influences the escape and entrance of vor-
tices to the superconductor [35, 36].

5.5 Appendix: Basic properties of Riccati pa-

rameters from the Eilenberger equations

Here, we discuss basic properties of Riccati parameters a and b from the
Eilenberger equations, which impose a relation between f and f̄ . Eilenberger
equations read

vF∂xa + (2(−iE + δ) + ∆∗a) a− ∆ = 0, (5.11)

vF∂xb− (2(−iE + δ) + ∆b) b+ ∆∗ = 0. (5.12)

With the transtormation a(E + iδ, k, r) → −a∗(−E + iδ,−k, r) in the first
equation, we obtain

−vF∂xa
∗ + (2(−iE + δ) − ∆∗a∗) a∗ + ∆∗ = 0 (5.13)

with wave vector k and position r, because ∆(k) = −∆(−k). Hence, we
have b(E+ iδ, k, r) = −a∗(−E+ iδ,−k, r). Anomalous Green’s functions are
given by

f =
−2ia

1 + ab
=

−2ia

1 − aa∗(−E + iδ,−k, r), (5.14)

f̄ =
2ib

1 + ab
=

−2ia∗(−E + iδ,−k, r)
1 − aa∗(−E + iδ,−k, r) . (5.15)
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This results in f̄ (E + iδ, k, r) = −f∗(−E + iδ,−k, r) and hence we get
f̄ep(E+iδ, k, r) = −f∗

ep(−E+iδ, k, r) and f̄op(E+iδ, k, r) = f∗
op(−E+iδ, k, r).

Therefore, we have at E = 0

ff̄ = (fep + fop)(−f∗
ep + f∗

op) =
∣∣fop

∣∣2 −
∣∣fep

∣∣2 + 2iIm(fepf
∗
op) (5.16)

and finally the DOS

−Reg =

√√√√1

2

(

1 +
∣∣fep

∣∣2 −
∣∣fop

∣∣2 +

√(
1 +

∣∣fep

∣∣2 −
∣∣fop

∣∣2
)2

+ 4
(
Im(fepf

∗
op)
)2
)

.(5.17)
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Chapter 6

Summary and outlook

In this thesis, we studied superconducting systems with broken symmetry.
The presence of ferromagnet, vortex and surface breaks symmetry in spin
space and translational symmetry. These broken symmetry is an important
ingredient of the emergence of odd frequency superconductivity which hardly
appears in bulk materials –it has been a huge obstacle for the development
of the study of odd frequency superconductivity. By considering these sym-
metry breaking systems, we elucidated how this exotic pairing state arises
and influences observable quantities, especially density of states, which will
provide a new insight on the physics of the odd frequency superconductivity.

In chapter 2, we studied the conditions for the appearance of the peak
in the density of states of diffusive ferromagnet in normal metal / diffusive
ferromagnet / superconductor junctions. A detailed theoretical study of the
tunneling conductance and the density of states in these junctions is pre-
sented.

In chapter 3, we investigated the proximity effect and pairing symmtry in
diffusive ferromagnet / superconductor junctions. Various possible symme-
try classes in a superconductor were considered which are consistent with
the Pauli’s principle: even-frequency spin-singlet even-parity state, even-
frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity
state and odd-frequency spin-singlet odd-parity state. The relevance of the
odd-frequency to the density of states is discussed.

In chapter 4, we studied pairing symmetry inside the Abrikosov vortex
core in superconductors. We showed that only odd-frequency spin-singlet
chiral p-wave pairing is allowed at the center of the core in s-wave supercon-
ductors as a consequence of the broken translational symmetry. This makes
it possible to provide a new interpretation of the Andreev bound states inside
the core as the manifestation of the odd-frequency pairing. We also unveiled
the sum rule behind this phenomenon. Based on these results, we proposed
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the experimental setup to verify the existence of odd-frequency pairing in
bulk materials by using superconducting scanning tunneling spectroscopy.

In chapter 5, we studied the density of states in chiral p-wave supercon-
ductor in the presence of an Abrikosov vortex in front of a specular surface.
We clarified that the density of states at the shadow region behind the vor-
tex is sensitive to its chirality. When the chirality is the same as (opposite
to) that of the superconductor, the zero energy peak (gap) of the density of
states at the shadow region emerges. This is because the density of states
at the shadow region has a linear term of the vector potential. Based on the
results, we proposed chirality sensitive test on superconductors.

Since phase transitions involving pairing of fermions form centerpieces of
physics, our prediction could make a widespread impact on such disparate
subdisciplines as cosmology, astrophysics, condensed matter physics, physics
of extremely dilute ultra-cold atomic gases, and physics of quantum liquids.
Extending the possible pairing states compatible with the Pauli-principle will
influence all these disciplines.

Finally, we will comment on future problems. In chapters 2 and 3, we in-
vestigated the proximity effect and pairing symmtry in diffusive ferromagnet
/ superconductor junctions, assuming a uniform magnetization of the ferro-
magnet. An interesting problem is to study the proximity effect in a simi-
lar junction by considering nonuniform magnetization (domain structure) or
antiferromagnetism, instead of the uniform magnetization. Also, to gener-
alize the formalism to take into account arbitrary impurity concentration of
the ferromagnet, arbitrary magnitude of the exchange field including half-
metallicity or spin-active interface is an important future study. In chapter
5, we found that the surface density of states in chiral p-wave superconductor
in the presence of an Abrikosov vortex in front of a specular surface is sensi-
tive to the chirality. This effect may influence the Bean-Livingston barrier,
which influences the escape and entrance of vortices to the superconductor.
To study how the Bean-Livingston barrier would be modified by this chirality
sensitive effect is a remaining but intriguing problem.
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