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LENGTH OF SINE CURVE

Consider a sine curve given by

y = b sin
x

a
. (1)

Its line element reads

ds2 =
a2 + b2

a2

(

1 − k2 sin2 x

a

)

dx2, k2 =
b2

a2 + b2
. (2)

Therefore, the length of the sine curve over a quarter period can be calculated as
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√

a2 + b2E(k) (3)

where E(k) is the complete elliptic integral of the second kind.

MAGNETOSTATIC POTENTIAL BY A CHARGED CIRCLE

Let us consider the magnetostatic potential induced by charge uniformly distributed with unit line density on a
circle with radius R. We consider the potential at a point P(a, b, c). The point on the circle can be written as
Q(R cos θ, R sin θ, 0). Then, we have

PQ2 =
(

√

a2 + b2 + R
)2

+ c2 − 4R
√

a2 + b2 cos2
θ − α

2
(4)

with tan α = b
a . Therefore, we can calculate the potential at P as
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where

k2 =
4R

√
a2 + b2

(√
a2 + b2 + R

)2
+ c2

(6)

and K(k) is the complete elliptic integral of the first kind. In the limit of a, b → 0, we have U = R
2ε

√

R2+c2
.
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ANHARMONIC OSCILLATION

Here, let us consider the oscillation of a particle confined by anharmonic potentials. The law of energy conservation
reads

E =
1

2
m

(

dx

dt

)2

+ U(x). (7)

We can factorize as

2

m
(E − U(x)) = (x − a1)(a2 − x)V (x). (8)

We assume that the oscillation occurs between a1 and a2 (a1 < a2). By integrating Eq.(7), we have

t =

∫

dx
√

(x − a1)(a2 − x)V (x)
. (9)

By setting x = 1

2
(a1 + a2) + 1

2
(a1 − a2) cos ϕ, we finally obtain the following expression of t:

t =

∫

dϕ
√

V
. (10)

Quartic potential. As an example, let us consider a quartic potential of the form

U(x) =
α

2
x2 +

β

4
x4 (11)

with α, β > 0, which can be rewritten as

2

m
(E − U(x)) = −

β

2m
(x2 − a2)(b2 + x2) (12)

where E > 0 and

a2 =
−α +

√

α2 + 4βE

β
, b2 = a2 +

2α

β
. (13)

The period of the oscillation is thus calculated as
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√
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√
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where

k2 =
a2

a2 + b2
=

βa2

2(α + βa2)
. (15)

In the limit of β → 0, we have T = 2π
√

m
α .

Cubic potential. Next, let us consider a cubic potential of the form

U(x) =
α

2
x2 −

γ

2
x3 (16)

with α, γ > 0, which can be factorized as

2

m
(E − U(x)) =

γ

m
(x − a1)(a2 − x)(a3 − x), a1 < a2 < a3 (17)

where E > 0, and thus V (x) = γ
m (a3 − x). The period of the oscillation is given by
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where k2 = a2−a1

a3−a1

. In the limit of γ → 0, we have a1 = −a2 and γa3 = α, and hence T = 2π
√

m
α .
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ROTATION OF A RIGID BODY

Consider a free rotation of a rigid body described by the Euler’s equation of motion in a rotating frame: d
dtL+ω×L =

0 where

ω =





ω1

ω2

ω3



 , L =





Aω1

Bω2

Cω3



 . (19)

Thus, we have

A
d

dt
ω1 = (B − C)ω2ω3, B

d

dt
ω2 = (C − A)ω3ω1, C

d

dt
ω3 = (A − B)ω1ω2. (20)

For C > B > A, we consider the solution of the form:

ω1 = αcnλt, ω2 = βsnλt, ω3 = γdnλt. (21)

Note ω3 > 0. Inserting these ansatz into the equation of motion, we have

αβγ

λ
=

Aα2

C − B
=

Bβ2

C − A
=

k2Cγ2

B − A
. (22)

The energy conservation law reads 2E = Aα2 +Cγ2 with the energy E. The magnitude of angular momentum is also
conserved: L2 = A2α2 + C2γ2. With these conditions, we finally obtain

α2 =
2EC − L2

A(C − A)
, β2 =

2EC − L2

B(C − B)
, γ2 =

−2EA + L2

C(C − A)
, k2 =

B − A

C − B

2EC − L2

−2EA + L2
, λ2 =

C − B

ABC
(−2EA + L2).(23)


