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LENGTH OF SINE CURVE
Consider a sine curve given by
T
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Its line element reads
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Therefore, the length of the sine curve over a quarter period can be calculated as
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where E(k) is the complete elliptic integral of the second kind.

MAGNETOSTATIC POTENTIAL BY A CHARGED CIRCLE

Let us consider the magnetostatic potential induced by charge uniformly distributed with unit line density on a
circle with radius R. We consider the potential at a point P(a,b,c). The point on the circle can be written as
Q(Rcos 6, Rsin6,0). Then, we have
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with tana = g. Therefore, we can calculate the potential at P as
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12— 4Rv/a? + b?
(Va2 ¥+ R)" +¢2

and K (k) is the complete elliptic integral of the first kind. In the limit of a,b — 0, we have U = 26\/%4’62



ANHARMONIC OSCILLATION

Here, let us consider the oscillation of a particle confined by anharmonic potentials. The law of energy conservation
reads
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We can factorize as
2(E-U@) = (¢ - ar)(as — 2)V(2). (8)
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We assume that the oscillation occurs between a; and ag (a1 < ag). By integrating Eq.(7), we have
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By setting @ = %(ay + az) + 3(a1 — az) cos ¢, we finally obtain the following expression of ¢:
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Quartic potential. As an example, let us consider a quartic potential of the form
Uz) = %xQ + §x4 (11)
with «, 8 > 0, which can be rewritten as
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where £ > 0 and
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The period of the oscillation is thus calculated as
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where

In the limit of 8 — 0, we have T' = 2w,/ *>.
Cubic potential. Next, let us consider a cubic potential of the form

Ulz) = %ﬁ - gz?’ (16)
with «,y > 0, which can be factorized as
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where £/ > 0, and thus V(x) = X (a3 — ). The period of the oscillation is given by
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where k% = Zif‘“ In the limit of v — 0, we have a; = —az and yaz = «, and hence T' = 27/ 2.




ROTATION OF A RIGID BODY

Consider a free rotation of a rigid body described by the Euler’s equation of motion in a rotating frame: %Lqu xL =
0 where

w1 Awl
w=|w |, L= Bwsy |. (19)
w3 Cuws
Thus, we have
Ai =(B-0) Bi =(C-4A) C’i =(A-B) (20)
dtwl = Waws, dth = wswi, dtwg = wiwa.
For C > B > A, we consider the solution of the form:
w1 = acn\t, ws = BsnAt, w3 = ydnAt. (21)

Note w3 > 0. Inserting these ansatz into the equation of motion, we have
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The energy conservation law reads 2F = Aa? 4+ C? with the energy E. The magnitude of angular momentum is also

conserved: L? = A%2a2 + C?~42. With these conditions, we finally obtain
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