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PARTIAL DIFFERENTIAL EQUATIONS

Types of partial differential equations are summarized as follows.
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∂2u

∂x2
Wave equation (1)
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Wave equation with friction (2)
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Beam equation. (4)
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= D

∂2u
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Diffusion equation (5)
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− ku Diffusion equation with lateral concentraton loss (6)
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Diffusion − convection equation (7)

∂u
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= D

∂2u

∂x2
− u

∂u

∂x
Burgers equation. (8)

Note

Some notes on the partial differential equations listed above are presented. Some transformations can simplify the
equations:

In the transmission line equation, this transformation eliminates the ut term

u = e−kt/2w. (9)

In the diffusion equation with lateral concentraton loss, this transformation reduces it to the simple diffusion
equation

u = e−ktw. (10)

In the diffusion-convection equation, this transformation reduces it to the simple diffusion equation

u = e−v[x−vt/2]/2Dw. (11)

The solution of the Burgers equation can be constructed by the following transformation where ψ obeys the simple
diffusion equation :

u = −2D
∂

∂x
lnψ. (12)

This transformation is called the Hopf-Cole transformation. The solution of the initial value problem of the Burgers
equation thus reads [u(x, 0) = f(x)]
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∂

∂x
ln
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]

. (13)
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FIG. 1: Plots of u(x, t). Left: u(x, 0) = e
−x

2

. Middle: u(x, 0) = tanh(10x). Right: u(x, 0) = 1− 2 tanh(10x).

Typical solutions of the Burgers equation are shown in Fig. 1. Interestingly, we see a shock wave solution in the
right panel. Intuitively, this is because the velocity of the wave is given by u. Thus, the larger the magnitude of u,
the faster the wave travels. This interpretation is consistent with Fig. 1.

Derivation of the beam equation

Consider a beam along x-axis. We have two assumptions: No cross-sectional deformation:

εyy = εzz = εyz = 0. (14)

and Bernoulli-Euler assumption (Bernoulli-Euler Beam):

εxy = εxz = 0. (15)

Here, the strain tensor εij is defined as

εij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

. (16)

ui is the displacement vector. The diagonal elements represent extensional strain while the off-diagonal elements
denote shearing strain.

Let u(x) a displacement along the x-axis, w(x) a deflection along y-axis, and θ(x)(≪ 1) a slope of the beam. Then,
we have

ux = u− y sin θ ≃ u− yθ, uy = w + y(1− cos θ) ≃ w. (17)

Since εxy = 0, we obtain

θ =
dw

dx
. (18)

Therefore, we arrive at

εxx =
du

dx
− y

d2w

dx2
. (19)

According to the Hooke’s law, we obtain the normal stress of the beam:

σxx = Eεxx = E

(

du

dx
− y

d2w

dx2

)

(20)

where E is the Young’s modulus. The bending moment of the beam M can be calculated as

M =

∫

A

yσxxdA = EJy
du

dx
− EI

d2w

dx2
. (21)
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Here, dA is the infinitesimal section area. Jy and I denote the first sectional moment and the sectional moment of
inertia, respectively:

Jy =

∫

A

ydA, I =

∫

A

y2dA. (22)

If the x-axis goes through a centroid of the section, we have Jy = 0.
Now, consider the equation of motion of the beam:

ρA
∂2w

∂t2
=
∂V

∂x
+ p (23)

where ρ is the density, p is the external force, V is the shear force. The equilibrium equation of moments reads

∂M

∂x
= V. (24)

Thus, we finally obtain the beam equation:

ρA
∂2w

∂t2
= −EI

∂4w

∂x4
+ p. (25)

In the presence of viscous drag, the normal stress of the beam is given by

σxx = Eyκ+ ηy
∂κ

∂t
. (26)

Here, η is the viscosity coefficient, and κ represents the curvature of the beam, κ = −∂2w
∂x2 . The equation of motion of

the beam then becomes

ρA
∂2w

∂t2
= −EI

∂4w

∂x4
+ −ηI

∂5w

∂t∂x4
+ p. (27)

Alternatively, the kinetic and potential energies of the beam, K and U , are respectively given by

K =
1

2

∫

ρA

(

∂w

∂t

)2

dx, U =
1

2

∫

σxxεxxdAdx =
1

2

∫

Mκdx =
1

2

∫

EI

(

∂2w

∂x2

)2

dx. (28)

Variation of the action with respect to w also gives the beam equation.

OTHER PARTIAL DIFFERENTIAL EQUATIONS

We know the solutions of ∂u
∂t = L[u] for L[u] = ux and uxx. As a next step, consider the case of L[u] = uxxx:

∂u

∂t
=
∂3u

∂x3
. (29)

The solution for u(x, 0) = f(x) can be obtained by Fourier transforming the equation:

u =

∫

∞

−∞

F (x− y, t)f(y)dy, (30)

F (x, t) =
1

2π

∫

∞

−∞

exp
(

ik3t− ikx
)

dk = (3t)−1/3Ai

(

−
x

(3t)1/3

)

. (31)

Here, Ai(x) is the Airy function defined as

Ai(x) =
1

2π

∫

∞

−∞

exp

(

i
k3

3
+ ikx

)

dk. (32)

Incorporating uux and uxxx terms, we arrive at the KdV equation:

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3
= 0. (33)
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FIG. 2: The solutions of the KdV equation for u(x, 0) = 8sech2(0.5x). Time evolution of the wave from upper left to lower
right.

This equation has a traveling-wave solution given by

u(x− vt) = 3vsech2

(
√

v

2
(x− vt+ c)

)

(34)

where c is a constant.
The KdV equation can describes solitons. See the solutions of the KdV equation in Fig. 2. Solitary waves propagate

with independent velocities.
The solution of the following equation can be constructed by u = ψ2 + ∂

∂xψ (dubbed the Miura transformation)

∂u

∂t
− 6u

∂u

∂x
+
∂3u

∂x3
= 0 (35)

where ψ satisfies

∂ψ

∂t
− 6ψ2 ∂ψ

∂x
+
∂3ψ

∂x3
= 0. (36)

Finally, let us consider the sine-Gordon equation:

∂2u

∂t2
= c2

∂2u

∂x2
− sinu. (37)

This equation has a traveling-wave solution of the form u(x− vt). Then, the equation is reduced to

u′′ =
1

c2 − v2
sinu. (38)

The solution is then given by

u(x− vt) = 4 tan−1

[

exp

(

±
x− vt√
c2 − v2

)]

(39)

for c2 > v2 under the boundary condition cosu → 1 (x → ∞). For c2 = v2, the solution is trivial. For c2 < v2, the
equation is reduced to that of a simple pendulum, which can be written with elliptic functions as we saw in another
note.


