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The vth order Hankel transform of f(r) is defined as

The inverse Hankel transform is given by

f(r)= /Ooo kE,(k)J, (kr)dk.

The inversion formula is valid for v > —1/2.
Properties of Hankel transforms.
Hankel transforms have the following properties. Define A, as
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Then, if lim f(r) =0, we have

M, [Auf(r)] = —k2E, (k).
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H, [T—Qf(r)] SO DeTD [(v+ 1) Fy—2(k) + 2vF, (k) + (v — 1) Fy12(k)] .
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Hy {r”ldi?jl”f@’)] = —kF,1(k), Hy [T

r”+1f(r)] =kF,+1(k).
Let G, (k) = H, [g(r)]. Then, we have the Parseval’s theorem of the form:
/ rf(r)g(r)dr = / kF, (k)G (k)dk.
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Ezxamples of Hankel transforms.
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Ho [0(r — a)] = ady(ka), Ho[ad,(ar)] = 6(k —a), a > 0.

H, [ e ] = / e J, (kr)dr Lz T, (x),p =a/k].
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Here, L is the Laplace transform. Performing the Laplace transform of z¥J, (z), we have
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and, therefore,
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Applications of Hankel transforms.
1. Consider the heat conduction problem in a steady state:
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with the boundary condition,
0
—Iia—z =gf(a—r), z=0.

With the Hankel transform (v — U), the problem is reduced to
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g = gaJi(ka)/k, z = 0.

By solving the above equation and performing the inverse transform, we finally obtain the solultion of the form

u=qa/k /000 e " Jy(ka) Jo(kr) /kdk.

2. Consider a similar problem:
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7zt o @)u(r,z)o, z2>0

with the boundary condition

u(r,0) = f(r), z=0.

With the Hankel transform, we obtain

Ulk,z) =e " /OOO rf(r)Jo(kr)dr.

Hence, we have

_ [ e~k r Oos s s)ds
u(r,z)—/o ket Jo (k )dk/o £(5)Jo(ks)ds.
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3. Consider the electrostatic potential between two grounded horizontal plates at z = £[ in the presence of a point

charge ¢ at r = z = 0. The potential u can be written as
u=p+q(r?+2z%)7"?
where ¢ obeys the Laplace equation. The boundary conditions read

o(r, £l) + q(r2 + 12)_1/2 =0.

(23)

(24)



Taking the Hankel transform, these are reduced to

Thus, we have

and hence

Finite Hankel transforms.
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Let (3,5, the solution of hJ, () + zJ),(z) = 0. Define the finite Hankel transform as

Fu(ﬁu,n) = /O Tf('l")c],/ (,6”7n7d)d7".

Then, the inverse transform is given by
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This series is called the Dini expansion of f(r). Note the orthogonality
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As an example, consider the heat conduction problem

with the initial condition

and the boundary condition
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u(r,0)=1,0<r<1
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where h is a positive constant. By the transformation of the differential equation, we have

and thus
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Using the inversion formula, we have

The Weber transform.
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Define
Zy(k,r) = J,(kr)Y, (k) — Yo (kr)J, (k).

Then, the Weber transform is given by
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Fy(k) = / rf(r)Zy(k,r)dr, f(r) = /O ’“F”<’“)(Jy(k)>2+(Yy(k))2dk'
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If f is given by

then, we have
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