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HOMOLOGY, COHOMOLOGY, STOKES’ THEOREM, POINCARE’S LEMMA, DE RHAM’S
THEOREM, AND DOLBEAULT’S LEMMA

Ilustrate some examples with the boundary operator d. The cycle and boundary cycle are defined by 9C, = 0
and C, = 0Cy41, respectively (r is the dimension). If C,. — C.. = dC, 1, these are homologue, which gives homology
group, H = Z/B (cycle/boundary cycle). From the definition, we have 8% = 0.

As for cohomology, similarly we define dw” = 0 and w™*! = dw” as closed and exact forms (cocycle and boundary
cocycle), respectively. When w™! —w/mt1 = dw", these are cohomologue, which leads to cohomology group, H = Z/B
(closed/exact).

Show some examples with the exterior differentiation operator d. Let us first consider O-form in 2D ¢ = f(x,y).
Then,

do = Op f(x,y)dx + Oy f (x,y)dy. (1)
Introduce “wedge” A. Note that dz A dy = —dy A dx etc. From the definition, we have
d*p = (0.0, f (x,y) — 0,0, f (x,y))dx A dy = 0. (2)

Generally, we find d? = 0.
Now, let us consider 1-form ¢ = fydx + fydy. Then,

dp = (Oy fo — Oz fy)dx A dy = (rotf).dx A dy. (3)
Thus, rotation free vectors give closed forms. For instance, ¢ = %ﬁﬁdy is closed. Let us consider 2-form in 3D
o = fody Ndz + fydz Ndx + f.dx A dy, (4)
and then we have
do = (Oufz + Oyfy + 0. f2)dx AN dy A dz = (divE)dz A dy A dz. (5)

Thus, divergenceless vectors give closed forms.
Generalized Stokes’ theorem is represented as

/ dw" = / w” (6)
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FIG. 1: Some examples.



or simply (Cr41,dw”) = (0C,41,w"). Show examples for r = 0,1,2. We see the similarity between 9 and d.
The Stokes’ theorem can be extended to complex variables, which immediately provides the complex form of Green’s
theorem:

_ 0 g
e f(z,2)dz /c ;f(z, Z)dzZ A dz. (7)
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Note dz A dz = 2idx AN dy. If f(z,Z) = f(z), we obtain the Cauchy’s integral theorem

e (2)dz =0. (8)

In fact, for ¢ = fdz, we have

dp =df Ndz =d(u+iv) Nd(z +iy) = { (g—ZﬁL%)Jrz(%g—Z)} dx A dy. (9)

Namely, dp = 0 is equivalent to the Cauchy-Riemann equations.
The generalized Cauchy’s formula reads

12 =00 |, t=z % 2m'/Dg—z og WM (10)

If f(z,2) = f(2), this reduces to the Cauchy’s integral formula. Verify the generalized Cauchy’s formula for f = 2z
and a unit circle D
Poincare’s lemma dictates that in a simply connected region, dy = 0 < ¢ = du, which guarantees the presence of

the potential. If F' is a conserved force, rotF = 0, then F = V¢ (see also below). This is generalized to multiply
connected region (de Rham’s theorem), and complex variables (Dolbeault’s lemma).

EXAMPLES
Electromagnetic potential

If we set
a = —c(Eydx + Eydy + E.dz) Adt + Bydy A dz + Bydz A dx + B.dx A dy, (11)
da = dtA[{c(OyE, — 0.Ey) + OBy} dy Ndz + {c(0:Ey — 0. E.) + 0By} dz N dx + {c (0, Ey — OyEy) + 0:B. } dx A dy]
+ (0zBy +0yBy + 0.B.)dx Ndy ANdz =0 (12)
gives the Maxwell’s equations
crotE+ 0;B = 0,divB = 0. (13)
Poincare’s lemma guarantees the presence of the potential:
oa=dp,B =cpdt + Azdxr + Aydy + A.dz. (14)
In fact, we have

dB = [(cOzp — OrAz)dx + (cOyp — 01 Ay)dy + +(c0.0 — 0L A, )dz] A dt
+ (04 A, — 0,Ay)dy Ndz + (0, Az — 0, A,) dz ANdx + (0, Ay — 0y Az) dz A dy. (15)



First law of thermodynamics and internal energy

Let wg and wy, the heat absorbed and the work done by the system (wr = PdV), respectively. The first law of
thermodynamics dictates that for arbitrary closed path C in state space, one has

ﬁwzﬁw. (16)

Poincare’s lemma dictates that wg — wr, is exact: there exists a function U such that
wg —wr, = dU. (17)

U is called internal energy.

Hamiltonian

Consider a 2-form w and a vector field X on a 2D manifold described by local coordinates ¢ and p:

d dgd dpd

=dpNd X=—=— ——. 18
©E PR dt ~ dtdg | dt dp (18)

The Lie derivative of w with respect to X is given by
Lxw=d{w,X)+ (dw,X) =d(w,X). (19)

If X is a Hamiltonian vector field, i.e., Lxw = 0, then Poincare’s lemma dictates that there exists a function H which
satisfies

(w,X) =—dH. (20)
Since

(w, X) = (dp, X) dq — (dgq, X) dp = —-dq — —dp, (21)

we obtain the equation of motions

dg _OH dp_ OH
dt  op’ dt  Oq’

THE FROBENIUS CONDITION

Consider a 1-form w on R™. If w A dw = 0, there exist functions f and g such that w = fdg. w A dw = 0 is called
the Frobenius condition which gives integrability condition. For example, for w = Pdx 4+ Qdy + Rdz, we have the
integrability condition:

P P
wAhdw=1Q | - Vx| Q | =0. (23)
R R

Now, consider a 1-form on a 2D manifold described by local coordinates V and U:
w = PdV + dU. (24)

Here, P,V and U are the pressure, the volume, and the internal energy of a system, respectively. Since w A dw = 0 is
satisfied, there exist an integrating factor 1/T" and a function S such that

1
dS = Zw & TdS = PdV + dU. (25)

S is called entropy.



CONFORMAL TRANSFORMATIONS AND CAUCHY-RIEMANN EQUATIONS

Consider a line element with a metric g,,,,
ds® = g dridr". (26)
Under a transformation r — r’, the metric changes as

ore orf
9 (r') = ngaﬁ(r)- (27)

Conformal transformations are defined such that the angle between two vectors are kept invariant, which is described
by a local scale factor in the metric:

i (r') = Q(r)gas(r) (28)

since r - r' = g, r’r’*. Illustrate some examples of conformal transformations. Now, consider an infinitesimal
transformation of the form r* — r# + ¢#(r). Then, we have

ds® — ds* + (Oue, + Oye,)drdr. (29)
Here, €, = g, €”. Conformal invariance requires
Ouev +0ve = Cau (30)
with some function C'. By multiplying g"¥, we obtain C' = %8,\5/\.

Now, consider a two dimensional flat (Euclidean) space (d = 2, g, = d,,,,). Then, we obtain the Cauchy-Riemann
equations from the above equations:

ey = Oyey, Opey = —0Oyey (31)
This is equivalent to %5 = 0, and hence we can express the transformation as

z— 2 = f(2). (32)



