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FOURIER TRANSFORMATION

Fourier transformation is defined as
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The inverse Fourier transformation is defined as
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Ezxample. Consider the diffusion equation
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with @ > 0 and u(z,t) = 0 for ¢t < 0. With the Fourier
transformation,
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we obtain
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Thus,
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Now, consider the diffusion equation

<% - “aa_;> u(z,t) = 0 (7)

for ¢ > 0 under the initial condition u(z,0) = f(x). The
solution is then given by

utet) = [ T deGa - e 0 /(). (8)
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LAPLACE TRANSFORMATION

Laplace transformation is defined as

uo(p) = / " dwe vy (x) = Liy(z)] (9)

while its inverse transformation is defined as
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~ is chosen so that all poles of yr,(p) lie in the left side of
the integration path.
Ezample. Consider the differential equation

d%y
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for © > 0 with the initial condition y(0) = 3'(0) = 0.
Now, using
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and
Lly"(x)] = p*yL(p) — py(0) — ¢'(0), (13)
we have
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Therefore, we arrive at
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with the use of convolution theorem, where
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Finally, we get the solution

y(z) = /0 " F(©sin(e — e, (17)

Ezercise. Charge accumulated at the capacitor ¢(t)
in the circuit obeys the following equation (Kirchhoff’s
laws). Solve for ¢(t), using Laplace transformation,
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under the initial condition ¢(0) = Q, %4(0) = I.
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