Residue at infinity

Takehito Yokoyama Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan (Dated: April 28, 2013)

It is useful to introduce the residue at infinity. It is defined as

$$\operatorname{Res}(f(z);\infty) \equiv -\frac{1}{2\pi i} \oint_C f(z)dz \tag{1}$$

where C is a simple closed path in $R < |z| < \infty$. If we expand f(z) as $f(z) = \sum a_n z^n$ in $R < |z| < \infty$, we have $\operatorname{Res}(f(z); \infty) = -a_{-1}$. By changing the variable as w = 1/z, the residue can be expressed as

$$\operatorname{Res}(f(z);\infty) = -\frac{1}{2\pi i} \oint_{C'} f(1/w) \frac{dw}{w^2} = -\operatorname{Res}(f(1/z)/z^2;0)$$
(2)

where C' is a simple closed path in 0 < |w| < 1/R. If $f(\infty) = 0$, we can write $\operatorname{Res}(f(z); \infty) = -\lim_{z \to \infty} zf(z)$.

Let z_i denote the finite singularities of the (rational) function f(z). Then, we can derive the following sum rule:

$$\sum_{i} \operatorname{Res}(f(z); z_i) + \operatorname{Res}(f(z); \infty) = 0.$$
(3)

Thus, when $\lim_{z\to\infty} zf(z) = 0$, the sum rule is reduced to $\sum_{i} \operatorname{Res}(f(z); z_i) = 0$.

Let us illustrate some examples. $\operatorname{Res}(1/z; \infty) = -1$. Note that even if f(z) is analytic at infinity, it has a residue there.

Since

$$\frac{a^2 - z^2}{a^2 + z^2} \frac{1}{z} = -\frac{1}{z} + \dots$$
(4)

at $z \to \infty$, for a simple closed contour C enclosing the points $z = 0, \pm ia$, we obtain

$$\frac{1}{2\pi i} \oint_C \frac{a^2 - z^2}{a^2 + z^2} \frac{dz}{z} = -1.$$
(5)

Confirm the sum rule in the above examples.